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An	Overview	of	
Programming	for	Intel®	Xeon®	processors	

and	Intel®	Xeon	Phi™	coprocessors	

Introduction	
Intel Xeon Phi coprocessors are designed to extend the reach of applications that have 
demonstrated the ability to fully utilize the scaling capabilities of Intel Xeon processor-based 
systems and fully exploit available processor vector capabilities or memory bandwidth. For 
such applications, the Intel Xeon Phi coprocessors offer additional power-efficient scaling, 
vector support, and local memory bandwidth, while maintaining the programmability and 
support associated with Intel Xeon processors. 

Most applications in the world have not been structured to exploit parallelism. This leaves a 
wealth of capabilities untapped on nearly every computer system. Such applications can be 
extended in performance by a highly parallel device only when the application expresses a need 
for parallelism through parallel programming. 

Advice for successful parallel programming can be summarized as “.” Since most applications 
have not yet been structured to take advantage of the full magnitude of parallelism available in 
any processor, understanding how to restructure to expose more parallelism is critically 
important to enable the best performance on processors and coprocessors. This restructuring 
itself will generally yield benefits on most general-purpose computing systems, a bonus due to 
the emphasis on common programming languages, models, and tools that span these 
processors and coprocessors. I refer to this bonus as the dual-transforming-tuning advantage. 

 

Figure 1: For understanding the motivation, potential and needs of the Intel Xeon Phi Coprocessor, this is the picture that 
speaks a thousand words. The numerical values are illustrative and cannot represent every application. 

It has been said that a single picture can speak a thousand words; for understanding Intel 
Xeon Phi coprocessors (or any highly parallel device) Figure 1 is that picture. We should not 
dwell on the exact numbers as they are based on some models that may be as typical as 
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applications can be. The picture speaks to this principle: Intel Xeon Phi coprocessors offer the 
ability to build a system that can potentially offer exceptional performance while still being 
buildable and power efficient. Intel Xeon processors deliver performance much more readily for 
a broad range of applications but do reach a practical limit on peak performance as indicated 
by the end of the line in Figure 1. The key is “ready to use parallelism.” Note from the picture 
that more parallelism is needed to make Intel Xeon Phi coprocessor reach the same 
performance level, and that requires programming adapted to deliver that higher level of 
parallelism required. In exchange for the programming investment, we may reach otherwise 
unobtainable performance. The transforming-and-tuning double advantage of Intel products is 
that use of the same parallelism model, programming languages and familiar tools to greatly 
enhance preservation of programming investments. I will revisit this picture later. 

              

Figure 2: Intel Xeon processors and Intel Xeon Phi Coprocessors in a platform together 

A	system	
A typical platform is shown in Figure 2. Multiple such platforms may be interconnected to form 
a cluster or supercomputer. A platform cannot consist of only coprocessors. Processors are 
cache coherent and share access to main memory with other processors. Coprocessors are 
cache coherent SMP-on-a-chip1 devices that connect to other devices via the PCIe bus, and are 
not hardware cache coherent with other processors or coprocessors in the system. 

The Intel Xeon Phi coprocessor runs Linux. It really is an x86 SMP-on-a-chip running Linux. 
Every card has its own IP address. I logged onto one of our pre-production systems in a 
terminal window. I first got my shell on the host (an Intel Xeon processor), and then I did “ssh 
mic0” which logged me into the first coprocessor card in the system. Once I had this window, I 
listed /proc/cpuinfo. The result is 6100 lines long, so I’m showing the first 5 and last 26 lines 
in Figure 3. 

                                                            
1 SMP: Symmetric Multi‐Processor, a multiprocessor system with shared memory and running a single operating 
system. 
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In some ways, for me, this really makes the Intel Xeon Phi coprocessor feel very familiar. From 
this window, I can “ssh” to the world. I can run “emacs” (you can run “vi” if that is your thing). 
I can run “awk” scripts or “perl.” I can start up an MPI program to run across the cores of this 
card, or to connect with any other computer in the world. 

If you are wondering how many cores are in an Intel Xeon Phi coprocessor, the answer is “it 
depends.” It turns out there are, and will be, a variety of configurations available from Intel all 
with more than 50 cores. For years, we have been able to buy processors in a variety of clock 
speeds. More recently, an additional variation in offerings is based on the number of cores. The 
results in Figure 3 are from a 61-core pre-production Intel Xeon Phi coprocessor that is a 
precursor to the production parts known as an Intel Xeon Phi coprocessor SE10x. It reports a 
processor number 243 because the threads are enumerated 0..243 meaning there are 244 
threads (61 cores times 4 threads per core).  

The	First	Intel	Xeon	Phi	Coprocessor:	code	name	Knights	Corner	
While programming does not require deep knowledge of the implementation of the device, it is 
definitely useful to know some attributes of the coprocessor. From a programming standpoint, 
treating it as an x86-based SMP-on-a-chip with over 50 cores, with multiple threads per core 
and 512-bit SIMD instructions, is the key. It is not critical to completely absorb everything else 
in this part of the paper, including the micro-architectural diagrams in Figure 4 and 5 that I 
chose to include for those who enjoy such things as I do. 

Figure 3: Screenshot of an ssh session on a pre‐production Intel Xeon Phi Coprocessor 
with the beginning and end of the 6100 lines of “cat /proc/cpuinfo” 
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The cores are in-order dual issue x86 processor cores which trace some history to the original 
Pentium design, but with the addition of 64-bit support, four hardware threads per core, power 
management, ring interconnect support, 512 bit SIMD capabilities and other enhancements 
these are hardly the Pentium cores of 20 years ago. The x86-specific logic (excluding L2 caches) 
makes up less than 2% of the die area for an Intel Xeon Phi coprocessor. 

Here are key facts about the first Intel Xeon Phi coprocessor product: 

 A coprocessor (requires at least one processor in the system), in production in 2012. 
 Runs Linux* (source code available http://intel.com/software/mic). 
 Manufactured using Intel’s 22nm process technology with 3-D Trigate transistors. 
 Supported by standard tools including Intel Cluster Studio XE 2013. A list of additional 

tools available can be found online (http://intel.com/software/mic). 
 Many cores: 

o More than 50 cores (it will vary within a generation of products, and between 
generations; it is good advice to avoid hard-coding applications to a particular 
number). 

o In-order cores support 64-bit x86 instructions with uniquely wide SIMD 
capabilities. 

o Four hardware threads on each core (resulting in more than 200 hardware 
threads available on a single device) are primarily used to hide latencies implicit 
in an in-order microarchitecture. In practice, use of at least two threads per core 
is nearly always beneficial. As such, it is much more important that applications 

Figure 4: Knights Corner Core
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use these multiple hardware threads on Intel Xeon Phi coprocessors than they 
use hyper-threads on Intel Xeon processors. 

o Cores interconnected by a high-speed bidirectional ring. 
o Cores clocked at 1 GHz or more. 
o Cache coherent across the entire coprocessor. 
o Each core has a 512-KB L2 cache locally with high-speed access to all other L2 

caches (making the collective L2 cache size over 25 MB). 
o Caches deliver highly-efficient power utilization while offering high bandwidth 

memory. 
 Special instructions in addition to 64 bit x86: 

o Uniquely wide SIMD capability via 512 bit wide vectors instead of the narrower 
MMX, SSE or AVX capabilities. 

o High performance support for reciprocal, square root, power and exponent 
operations. 

o Scatter/gather and streaming store capabilities to achieve higher effective 
memory bandwidth. 

 Special features: 
o On package memory controller supports up to 8GB GDDR5 (varies based on 

part). 
o PCIe connect logic is on-chip. 
o Power management capabilities. 
o Performance monitoring capabilities for tools like Intel® VTune™ Amplifier XE 

2013. 

 

Figure 5: Knights Corner Microarchitecture 

When	to	use	an	Intel	Xeon	Phi	coprocessor	
Applications can use both Intel Xeon processors and Intel Xeon Phi coprocessors to contribute 
to application performance. Applications should utilize a coprocessor for processing when it 
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can contribute to the performance of a node. Generally speaking that will be during the 
portions of an application that can exploit high degrees of parallelism. For some workloads, the 
coprocessor(s) may contribute significantly more performance than the processor(s) while on 
others it may be less. System designs that include Intel Xeon Phi coprocessor(s) extend the 
range of node performance beyond what is possible with processors only. Because of the 
sophisticated power management in both Intel Xeon processors and Intel Xeon Phi 
coprocessors, the power efficiency of a node can be maintained across a broad range of 
applications by consuming power only when needed to contribute to node performance.                           

The	Importance	of	Maximizing	Performance	on	Intel	Xeon	processors	first	
The single most important lesson from working with Intel Xeon Phi coprocessors is this: the 
best way to prepare for Intel Xeon Phi coprocessors is to fully exploit the performance that an 
application can get on Intel Xeon processors first. Trying to use an Intel Xeon Phi coprocessor, 
without having maximized the use of parallelism on Intel Xeon processor, will almost certainly 
be a disappointment. Figure 6 illustrates a key point: higher performance comes from pairing 
parallel software with parallel hardware because it takes parallel applications to access the 
potential of parallel hardware. Intel Xeon Phi coprocessors offer a corollary to this: higher 
performance comes from pairing highly parallel software with highly parallel hardware. The 
best place to start is to make sure your application is maximizing the capabilities of an Intel 
Xeon processor. 

 

Figure 6: High performance comes from combining 
parallel software with parallel hardware. 

Why	scaling	past	one	hundred	threads	is	so	important	
In getting an application ready for utilizing an Intel Xeon Phi coprocessor, nothing is more 
important than scaling. An application must scale well past one hundred threads to qualify as 
highly parallel. Efficient use of vectors and/or memory bandwidth is also essential. 
Applications that have not been created or modified to utilize high degrees of parallelism (task, 
threads, vectors, and so on) will be more limited in the benefit they derive from hardware that 
is designed to offer high degrees of parallelism. 
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Figure 7 and 8 show examples of how application types can behave on Intel Xeon processors 
versus Intel Xeon Phi coprocessors in two key cases: computationally bound and memory 
bound applications. Note that a logarithmic scale is employed in the graph therefore the 
performance bars at the bottom represent substantial gains over bars above; results will vary 
by application. Measuring the current usage of vectors, threads and aggregate bandwidth by an 
application can help understand where an application stands in being ready for highly parallel 
hardware. Notice that “more parallel” enhances both the processor and coprocessor 
performance. A push for “more parallel” applications will benefit Intel Xeon processors and 
Intel Xeon Phi coprocessors because both are general-purpose programmable devices. 

 

Figure 7: Combining Threads and Vectors works best for Processors and Coprocessors, 
Coprocessors extend the reach of Processors 

 

 

Figure 8: High Memory Needs are Helped with Threads on Processors and Coprocessors, 
Coprocessors extend the reach of Processors 
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Coming back to the very first figure of this paper, Figure 9, 10 and 11 offer a view to illustrate 
the same need for constructing to use lots of threads and vectors. The first figure illustrates 
model data to make a point: Intel Xeon Phi coprocessors can reach heights in performance 
beyond that of an Intel Xeon processor, but it requires more parallelism to do so. The other two 
figures are simply close-ups of parts of the first figure to make a couple of points. Figure 10 
illustrates the universal need for more parallelism to reach the same performance level on a 
device optimized for high degrees of parallelism (in this case, an Intel Xeon Phi coprocessor). 
Figure 11 illustrates that limiting “highly parallel” to the levels of parallelism that peak an Intel 
Xeon processor are insufficient to be interesting on an Intel Xeon Phi coprocessor. These close 
up looks drive home the point of the first figure: to go faster, you need more parallelism, while 
adding the less obvious “to go the same speed, you need more parallelism.” 

How	to	get	more	than	hundred	threads?	
Fortunately, use of OpenMP*, Fortran do concurrent, Intel® Threading Building Blocks (TBB) 
and Intel® Cilk™ Plus offer capabilities that support creating this many threads in a program. 
Most commonly an outermost loop is transformed by a directive, keyword or template to 
become a parallel loop that offers the ability for many threads. I say offers because a loop with 
a million iterations may offer the opportunity for a million threads but we will show restraint 
and we will create far fewer at run time to efficiently match the hardware. Listings 1 and 2 give 
the simplest examples of what creating threads from a loop in OpenMP looks like through the 
addition of a single directive or pragma. Generally some additional restructuring or alignment 
work is needed for optimal performance, but that work generally looks quite natural after it has 
been done and the directive remains the notable code change you will see on inspection of a 
program. 
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Figure 9: The potential is higher, but so is the parallelism needed to get there.

 

Figure 10: If you only need the peak of an Intel Xeon 
processor, then an Intel Xeon processor can do it with 

fewer threads. 

 

Figure 11: If you limit threading to only what an Intel 
Xeon processor needs, then you are not highly parallel. 
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!$OMP PARALLEL do PRIVATE(j,k) 
   do i=1, M 
      ! each thread will work its own part of the problem 
      do j=1, N 
          do k=1, X 
              ! calculations 
          end do 
      end do 
  end do 

Listing 1: Fortran do loop transformed to create many threads using an OpenMP directive 

 
#pragma omp parallel for private(j,k) 
   for (i=0; i<M; i++) { 
      // each thread will work its own part of the problem 
      for (j=0; j<N; j++) { 
         for (k=0; k<X; k++)  { 

                 // calculation 
         } 
      } 
   } 

Listing 2: C for loop transformed to create many threads using an OpenMP pragma 

Maximizing	parallel	program	performance	
When choosing whether to run an application on Intel Xeon processors or Intel Xeon Phi 
coprocessors, we can start with two fundamental considerations to achieve high performance: 

1. Scaling: Is the scaling of an application ready to utilize the highly parallel capabilities of 
an Intel Xeon Phi coprocessor?  The strongest evidence of this is generally demonstrated 
scaling on Intel Xeon processors. 

2. Vectorization and Memory usage: Is the application either: 
a. Making strong use of vector units? 
b. Able to utilize more local memory bandwidth than available with Intel Xeon 

processors? 

If these two fundamentals (both #1 and #2) are true for an application, then the highly parallel 
and power-efficient Intel Xeon Phi coprocessor is most likely to be worth evaluating. 

Ways	to	measure	readiness	for	highly	parallel	execution	
To know if your application is maximized on an Intel Xeon processor based system, you should 
examine how your application scales, uses vectors and uses memory. Assuming you have a 
working application, you can get some impression of where you are with regards to scaling and 
vectorization by doing a few simple tests. 

To check scaling, create a simple graph of performance as you run with various numbers of 
threads (from one up to the number of cores, with attention to thread affinity) on an Intel Xeon 
processor based system. This can be done with settings for OpenMP*, Intel® Threading 
Building Blocks (Intel TBB) or Intel® Cilk™ Plus (for example, OMP_NUM_THREADS for 
OpenMP). If the performance graph indicates any significant trailing off of performance, you 
have tuning work you can do to improve your application scaling before trying an Intel Xeon 
Phi coprocessor. 
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To check vectorization, compile your application with and without vectorization. For instance, if 
you are using Intel compilers auto-vectorization: disable vectorization via compiler 
switches: -no-vec –no-simd, use at least –O2 -xhost for vectorization. Compare the performance 
you see. If the performance difference is insufficient you should examine opportunities to 
increase vectorization. Look again at the dramatic benefits vectorization may offer as illustrated 
in Figure 7. If you are using libraries, like the Intel Math Kernel Library (MKL), you should 
consider that math routines would remain vectorized no matter how you compile the 
application itself. Therefore, time spent in the math routines may be considered as vector time. 
Unless your application is bandwidth limited, the most effective use of Intel Xeon Phi 
coprocessors will be when most cycles executing are in vector instructions2. While some may 
tell you that “most cycles” needs to be over 90%, I have found this number to vary widely based 
on the application. 

Intel VTune Amplifier XE 2013 can help measure computations on Intel Xeon processors and 
Intel Xeon Phi coprocessors to assist in your evaluations. 

Aside from vectorization, being limited by memory bandwidth on Intel Xeon processors can 
indicate an opportunity to improve performance with an Intel Xeon Phi coprocessor. For this to 
be most efficient, an application needs to exhibit good locality of reference and utilize caches 
well in its core computations. 

The Intel VTune Amplifier XE product can be utilized to measure various aspects of a program, 
and among the most critical is L1 Compute Density. This is greatly expanded upon in a paper 
titled “Using Hardware Events for Tuning on Intel® Xeon Phi™ Coprocessor (code name: 
Knights Corner).” 

When using MPI, it is desirable to see a communication versus computation ratio that is not 
excessively high in terms of communication. The ratio of computation to communication will be 
a key factor in deciding between using offload versus native model for programming for an 
application. Programs are also most effective using a strategy of overlapping communication 
and I/O with computation. Intel® Trace Analyzer and Collector, part of Intel Cluster Studio XE 
2013, is very useful for profiling MPI communications to help visualize bottlenecks and 
understand the effectiveness of overlapping with computation. 

What	about	GPUs?	
While GPUs cannot offer the programmability of an Intel Xeon Phi coprocessor, they do share a 
subset of what can be accelerated by scaling combined with vectorization or bandwidth. In 
other words, applications that show positive results with GPUs should always benefit from Intel 
Xeon Phi coprocessors because the same fundamentals of vectorization or bandwidth must be 
present. The opposite is not true. The flexibility of an Intel Xeon Phi coprocessor includes 
support for applications that cannot run on GPUs. This is one reason that a system built 
including Intel Xeon Phi coprocessors will have broader applicability than a system using 
GPUs. Additionally, tuning for GPU is generally too different from a processor to have the dual-
transforming-tuning benefit we see in programming for Intel Xeon Phi coprocessors. This can 

                                                            
2 In other words, a Vector Processing Unit (VPU) instructions being used on vector (not scalar) data. 
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lead to substantial rise in investments to be portable across many machines now and into the 
future. 

Beyond	the	Ease	of	Porting	to	Increased	Performance	
Because an Intel Xeon Phi coprocessor is an x86 SMP-on-a-chip, it is true that a port to an 
Intel Xeon Phi coprocessor is often trivial. However, the high degree of parallelism of Intel Xeon 
Phi coprocessors is best suited to applications that are structured to use the parallelism. 
Almost all applications will benefit from some tuning beyond the initial base performance to 
achieve maximum performance. This can range from minor work to major restructuring to 
expose and exploit parallelism through multiple tasks and use of vectors. The experiences of 
users of Intel Xeon Phi coprocessors and the “forgiving nature” of this approach are generally 
promising but point out one challenge: the temptation to stop tuning before the best 
performance is reached. This can be a good thing if the return on investment of further tuning 
is insufficient and the results are good enough. It can be a bad thing if expectations were that 
working code would always be high performance. There ain’t no such thing as a free lunch! The 
hidden bonus is the “transforming-and-tuning” double advantage of programming investments 
for Intel Xeon Phi coprocessors that generally applies directly to any general-purpose processor 
as well. This greatly enhances the preservation of any investment to tune working code by 
applying to other processors and offering more forward scaling to future systems. 

Transformation	for	Performance	
There are a number of possible user-level optimizations that have been found effective for 
ultimate performance.  These advanced techniques are not essential. They are possible ways to 
extract additional performance for your application. The “forgiving nature” of the Intel Xeon Phi 
coprocessor makes transformations optional but should be kept in mind when looking for the 
highest performance. It is unlikely that peak performance will be achieved without considering 
some of these optimizations: 

 Memory access and loop transformations (for example: cache blocking, loop unrolling, 
prefetching, tiling, loop interchange, alignment, affinity) 

 Vectorization works best on unit-stride vectors (the data being consumed is contiguous 
in memory). Data structure transformations can increase the amount of data accessed 
with unit-strides (such as AoS3 to SoA4 transformations or recoding to use packed 
arrays instead of indirect accesses). 

 Use of full (not partial) vectors is best, and data transformations to accomplish this 
should be considered. 

 Vectorization is best with properly aligned data. 
 Large page considerations (we recommend the widely used Linux libhugetlbfs library) 
 Algorithm selection (change) to favor those that are parallelization and vectorization 

friendly. 

                                                            
3 Array of Structures (AoS) 
4 Structure of Arrays (SoA) 
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Hyper‐threading	versus	Multi‐threading	
The Xeon Phi coprocessor utilizes multithreading on each core as a key to masking the 
latencies inherent in an in-order microarchitecture. This should not be confused with hyper-
threading on Xeon processors that exists primarily to more fully feed a dynamic execution 
engine. In HPC workloads, very often hyper-threading may be ignored or even turned off 
without degrading effects on performance. This is not true of Xeon Phi coprocessor hardware 
threads, where multithreading of programs should not be ignored and hardware threads 
cannot be turned off. 

The Intel Xeon Phi coprocessor offers four hardware threads per core with sufficient memory 
capabilities and floating-point capabilities to make it generally impossible for a single thread 
per core to approach either limit. Highly tuned kernels of code may reach saturation with two 
threads, but generally applications need a minimum of three or four active threads per core to 
access all that the coprocessor can offer. For this reason, the number of threads per core 
utilized should be a tunable parameter in an application and be set based on experience in 
running the application. This characteristic of programming for Intel products will continue 
into the future, even though the “hyper-threading versus hardware threading” and the number 
of hardware threads may vary. Programs should parameterize the number of cores and the 
number of threads per core in order to easily run well on a variety of current and future 
processors and coprocessors. 

Coprocessor	major	usage	model:	MPI	versus	Offload	
Given that we know how to program the Intel Xeon processors in the host system, the question 
that arises is how to involve the Intel Xeon Phi coprocessors in an application. There are two 
major approaches: (1) a processor centric “offload” model where the program is viewed as 
running on processors and offloading select work to coprocessors, (2) a “native” model where 
the program runs natively on processors and coprocessors which may communicate with each 
other by various methods. An MPI program can be structured using either model. An MPI 
program with ranks only on processors may employ offload to access the performance of the 
coprocessors. An MPI program may run in a native mode with ranks on both processors and 
coprocessors. There is really no machine “mode” in either case, only a programming style that 
can be intermingled in a single application if desired. Offload is generally used for finer grained 
parallelism and as such generally involves localized changes to a program. MPI is more often 
done in a coarse grained manner often requiring more scattered changes in a program in order 
to add MPI calls. Intel MPI is tuned for both processors and coprocessors, so can exploit 
hardware features like remote direct memory access (RDMA). 

Being separate and on a PCIe bus creates two additional considerations. One is the need to fit 
problems or subproblems into the more limited memory on the coprocessor card, and the other 
is the overhead of data transfers that favor minimization of communication to and from the 
card. It is worth noting also, that the number of MPI ranks used on an Intel Xeon Phi 
coprocessor should be substantially fewer than the number of cores in no small part because 
of limited memory on the coprocessor. Consistent with parallel programs in general, the 
advantages of overlapping communication (MPI messages or offload data movement) with 
computation are important to consider as well as techniques to load balance work across all 
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the cores available. Of course, involving Intel Xeon processor cores and Intel Xeon Phi 
coprocessor cores adds the dimension of “big cores” and “little cores” to the balancing work 
even though they share x86 instructions and programming models. While MPI programs often 
already tackle the overlap of communication and computation, the placement of ranks on 
coprocessor cores still have to deal with the highly parallel programming needs and limited 
memory. This is why an offload model can be attractive, even within an MPI program where 
ranks are on the processors. 

The offload model for Intel Xeon Phi coprocessors is quite rich. The syntax and semantics of the 
Intel Language Extensions for Offload includes capabilities not present in some other offload 
models including OpenACC. This provides for greater interoperability with OpenMP, ability to 
manage multiple coprocessors (cards), and the ability to offload complex program components 
that an Intel Xeon Phi coprocessor can process but that a GPU could not (hence OpenACC does 
not allow). We expect that a future version of OpenMP will include offload directives that 
provide support for these needs, and Intel plans to support such a standard for Intel Xeon Phi 
coprocessors as part of our commitment to providing OpenMP capabilities. Intel Language 
Extensions for Offload also provide for an implicit sharing model that is beyond what OpenMP 
will support. It rests on a shared memory model supported by Intel Xeon Phi coprocessors that 
allow a shared memory-programming model (Intel calls “MYO”) between Intel Xeon processors 
and Intel Xeon Phi coprocessors. This bears some similarity to PGAS (partitioned global 
address space) programming models and is not an extension provided by OpenMP. It is not a 
PGAS implementation however! The Intel “MYO” capability offers a global address space within 
the node allowing sharing of virtual addresses, for select data, between processors and 
coprocessor on the same node. It is offered in C and C++, but not Fortran since future support 
of Coarray will be a standard solution to the same basic problem. Offloading is available as 
Fortran offloading via pragmas, C/C++ offloading with pragmas and optionally shared (MYO) 
data. Use of MPI can distribute applications across the system as well. 

Compiler	and	programming	models	
No popular programming language was designed for parallelism. In many ways, Fortran has 
done the best job adding new features, such as DO CONCURRENT, to address parallel 
programming needs as well as benefiting from OpenMP. C users have OpenMP as well as Intel 
Cilk™ Plus. C++ users have embraced Intel Threading Building Blocks and more recently have 
Intel Cilk™ Plus to utilize as well. C++ users can use OpenMP and OpenCL as well. 

Intel Xeon Phi coprocessors offer the full capability to use the same tools, programming 
languages and programming models as an Intel Xeon processor. However, as a coprocessor 
designed for high degrees of parallelism – some models are more interesting than others. 

In a way, it is quite simple: an application needs to deal with having lots of tasks and deal with 
vector data efficiently (also known as vectorization). 

There are some recommendations we can make based on what has been working well for 
developers. For Fortran programmers, use OpenMP, DO CONCURRENT and MPI. For C++ 
programmers, use Intel TBB, Intel Cilk Plus and OpenMP. For C programmers, use OpenMP 
and Intel Cilk Plus. Intel TBB is a C++ template library that offers excellent support for task 
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oriented load balancing. While Intel TBB does not offer explicit support for vectorization, it does 
not interfere with any choice of solution for vectorization. Intel TBB is open source and 
available on a wide variety of platforms supporting most operating systems and processors. 
Intel Cilk Plus is a bit more complex in that it offers support for both tasking and vectorization. 
Fortunately, Intel Cilk Plus fully interoperates with Intel TBB. Intel Cilk Plus offers a simpler 
set of tasking capabilities than Intel TBB but by using keywords in the language so as to have 
full compiler support for optimizing. 

Intel Cilk Plus also offers elemental functions, array syntax and “#pragma SIMD” to help with 
vectorization. Best use of array syntax is done along with blocking for caches, which 
unfortunately means naïve use of constructs such as A[:] = B[:] + C[:]; for large arrays may yield 
poor performance. Best use of array syntax ensures the vector length of single statements is 
short (some small multiple of the native vector length, perhaps only 1X).  Finally, and perhaps 
most important to programmers today, Intel Cilk Plus offers mandatory vectorization pragmas 
for the compiler called “#pragma SIMD.” The intent of “#pragma SIMD” is to do for vectorization 
what OpenMP has done for parallelization. Intel Cilk Plus requires compiler support. It is 
currently available from Intel for Windows, Linux and Apple OS X. It is also available in a 
branch of gcc. 

If you are happy with OpenMP and MPI, you have a great start to using Intel Xeon Phi 
coprocessors. Additional options may be interesting to you over time, but OpenMP and MPI are 
enough to get great results when used with an effective vectorization method. Auto-
vectorization may be enough for you especially if you code in Fortran with the possible 
additional considerations for efficient vectorization such as alignment and unit-stride accesses. 
The “#pragma SIMD” capability of Intel Cilk Plus (available in Fortran too) is worth a look. In 
time, you may find it has become part of OpenMP. 

Dealing with tasks means specification of work to be done, and load balancing among them. 
MPI has been used for decades with both full flexibility and full responsibility given to the 
programmer. More recently, shared memory programmers have Intel TBB and Intel Cilk Plus to 
assist them with built-in tasking models. Intel TBB has widespread usage in the C++ 
community, and Intel Cilk Plus extends Intel TBB to offer C programmers a solution as well as 
help with vectorization in C and C++ programs. 

Cache	optimizations	
The most effective use of caches comes by paying attention to maximizing the locality of 
references, blocking to fit in L2 cache, and ensuring that prefetching is utilized (by hardware, 
by compiler, by library or by explicit program controls). 

Organizing data locality to fit 512K or less L2 cache usage per core generally gives best usage of 
the L2 cache. All four hardware threads per core share their “per core” local L2 cache but have 
high-speed access to the caches associated with other cores. Any data used by a particular 
core will occupy space in that local L2 cache (it can be in multiple L2 caches around the chip). 
While Intel Xeon processors have a penalty for “cross-socket” sharing, which occurs after about 
16 threads (assuming 8 cores, two hyper-threads each), the Intel Xeon Phi coprocessors have a 
lower penalty across more than 200 threads. There is a benefit to having locality first organized 
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around the threads being used on a core (up to 4) first, and then around all the threads across 
the coprocessor. While the defaults and automatic behavior can be quite good, ensuring that 
code designed for locality performs best will likely include programmatic specification of affinity 
such as the use of KMP_AFFINITY when using OpenMP and I_MPI_PIN_DOMAIN with MPI. Note 
that while there is a strong benefit in sharing for threads on the same core, but beyond that 
you should not expect to see performance variations based on how close a core is to another 
core on coprocessor. While this may seem surprising, the hardware design is so good in this 
respect we have yet to see any appreciable performance benefit based on adjacency of cores 
within the coprocessor so I would not advise spending time trying to optimize placement 
beyond locality to a core and then load balancing across the cores (for instance using 
KMP_AFFINITY=scatter to round-robin work allocation). 

The coprocessor has hardware prefetching into L2 that is initiated by the first cache miss 
within a page. The Intel compilers issue software prefetches aggressively for memory-references 
inside loops by default (-O2 and above, report on compiler decisions available with -opt-report3 
-opt-report-phase hlo).  Typically, the compiler issues two prefetches per memory reference: 
one from memory into L2 and a second one for prefetching from L2 into L1. The prefetch 
distance is computed by the compiler based on the amount of work inside the loop. Explicit 
prefetching can be added either with prefetch pragmas (#pragma prefetch in C/C++ or CDEC$ 
prefetch in Fortran) or prefetch intrinsics (_mm_prefetch in C/C++, or mm_prefetch in Fortran); 
you may want to explicitly turn off compiler prefetching (-opt-prefetch=0 to turn off all compiler 
prefetches or -opt-prefetch-distance=0,2 to turn off compiler prefetches into L2) when you are 
adding prefetch intrinsics manually. Software prefetches do not get counted as cache misses by 
the performance counters. This means that “cache misses” can truly be studied with 
performance tools with a goal of driving them to essentially zero (aim for low single digit 
percentages of memory accesses counted as misses) inside loops when you can successfully 
fetch all data streams with prefetches. Prefetching needs to be from memory to L2 and 
separately from L2 to L1. Utilizing prefetches from memory to L1 directly should not be 
expected to yield great performance because the latency of such will generally lead to more 
outstanding L1 prefetches than are available in the hardware. Such limits mean that 
organizing data streams is best when the number of streams of data per thread is less than 
eight and prefetching is actively used on each stream of data. As a rule of thumb, the number 
of active prefetches per core should be managed to about 30 or 40 and be divided across the 
active data streams. 

Beyond the caches, certain memory transforms can be employed for additional tuning for TLBs 
including the ability to use large or small pages, organizing data streams, and to organizing 
data to avoid hot spots in the TLBs. 

Keeping	the	“Ninja	Gap”	under	control	
On the premise that parallel programming can require Ninja (expert) programmers, the gaps in 
knowledge and experience needed between expert programmers and the rest of us have been 
referred to as the “Ninja Gap.” Optimization for performance is never easy on any machine, but 
it is possible to control the level of complexity to manageable levels to avoid a high “Ninja Gap.” 
To understand more about how this “Ninja Gap” can be quantified, you might read the June 
2012 ISCA paper “Can Traditional Programming Bridge the Ninja Performance Gap for Parallel 
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Computing Applications?” The paper shares measurements of the challenges and shows how 
Intel Xeon Phi coprocessors offer the advantage of controlling the “Ninja Gap” to levels akin to 
general-purpose processors. The approach taken is able to rely on the same industry standard 
methods as general-purpose processors and the paper helps show how that benefit can be 
measured and shown to be similar to general-purpose processors. 

Summary:	transforming‐and‐tuning	double	advantage	
Programming should not be called easy, and neither should parallel programming. We can 
however, work to keep the fundamentals the same: maximizing parallel computations and 
minimizing data movement. Parallel computations are enabled through scaling (more cores and 
threads) and vector processing (more data processed at once). Minimal data movement is an 
algorithmic endeavor, but can be eased through the higher bandwidth between memory and 
cores that is available with the Intel Many Integrated Core (MIC) Architecture that is used by 
Intel Xeon Phi coprocessors. This leads to parallel programming using the same programming 
languages and models across Intel Xeon processors and Intel Xeon Phi coprocessors, which are 
generally also shared across all general-purpose processors in the industry. Languages such 
Fortran, C and C++ are fully supported. Popular programming methods such as OpenMP*, MPI 
and Intel TBB are fully supported. Newer models with widespread support such as Coarray 
Fortran, Intel® Cilk™ Plus and OpenCL* can apply as well. 

Tuning on Intel Xeon Phi coprocessors, for scaling, vector usage and memory usage, all stand 
to also benefit the application when run on Intel Xeon processors. This protection of 
investment by maintaining a value across Intel products is critical for helping preserve past 
and future investments. Applications that initially fail to get maximum performance on Intel 
Xeon Phi coprocessors, generally trace problems back to scaling, vector usage or memory 
usage. When these issues are addressed, these improvements to the application usually have a 
related positive effect when run on Intel Xeon processors. Some people call this the double 
advantage of “transforming-and-tuning” and have found it to be among the most compelling 
features of the Intel Xeon Phi coprocessors. 

Additional	reading	
Additional material regarding programming for Intel Xeon Phi coprocessors can be found at 
http://intel.com/software/mic. 

A new book titled “Intel® Xeon Phi™ Coprocessor High Performance Programming, Volume 1: 
Essentials” by Jim Jeffers and James Reinders, © 2013, published by Intel Press, is expected to 
be available in early 2013. 
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Figure 12: The double advantage of transforming‐and‐tuning means that optimizations are shared across the 
Intel products; Capabilities of Intel Xeon Processors are extended by Intel Xeon Phi Coprocessors. 
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Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely 
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The products described in this document may contain design defects or errors known as errata which may cause the 
product to deviate from published specifications. Current characterized errata are available on request.  

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your 
product order.  

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may 
be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm 
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