

Intel® Edison Kit for Arduino*

Hardware Guide

February 2015

Revision 007

 Document Number: 331191-007

Notice: This document contains information on products in the design phase of development. The information here is subject to change without
notice. Do not finalize a design with this information.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.
SHOULD YOU PURCHASE OR USE INTEL’S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL
AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST
ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF
PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT
INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or
characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to
restrictions stated in Intel’s Software License Agreement, or in the case of software delivered to the government, in accordance with the software
license agreement as defined in FAR 52.227-7013.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

The code names presented in this document are only for use by Intel to identify products, technologies, or services in development that have not
been made commercially available to the public, i.e., announced, launched, or shipped. They are not "commercial" names for products or services
and are not intended to function as trademarks.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel’s website at http://www.intel.com/design/literature.htm.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across
different processor families. See http://www.intel.com/products/processor_number for details.

Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the United States and other countries.

* Other brands and names may be claimed as the property of others.

Copyright © 2015 Intel Corporation. All rights reserved.

Intel® Edison Kit for Arduino*
Hardware Guide February 2015
2 Document Number: 331191-007

http://www.intel.com/design/literature.htm
http://www.intel.com/products/processor_number

Contents
1 Introduction ... 6

1.1 Software requirements ... 6
1.2 Terminology .. 6
1.3 References .. 6

2 Product Overview ... 7
2.1 Shield pin GPIO mapping .. 8
2.2 Pin function multiplexing control (summary) .. 9
2.3 Pin function multiplexing control (detailed) .. 10
2.4 GPIO interrupt support .. 11
2.5 Miscellaneous GPIOs ... 11
2.6 Pin direction and pullup control ... 12

3 High-Level Functional Description ... 13
3.1 Intel® Edison kit for Arduino* header signal list ... 14
3.2 Intel® Edison kit for Arduino* PWM swizzler ... 15
3.3 Intel® Edison kit for Arduino* analog inputs .. 16
3.4 Intel® Edison kit for Arduino* signal pullup resistors .. 16
3.5 Intel® Edison kit for Arduino* USB interface .. 16
3.6 Intel® Edison kit for Arduino* power supply .. 17
3.7 Intel® Edison kit for Arduino* expansion mechanicals ... 17

4 Powering the Intel® Edison kit for Arduino*.. 18
4.1 Boot voltage selection – DCIN signal .. 19

5 Batteries .. 20
6 Layout .. 21

6.1 Antenna keepout .. 21
6.2 Layout SD card, I2S, SPI, I2C ... 21
6.3 LEDs .. 21

7 Handling ... 22
8 Debug UART and Low-Power Sleep Mode .. 23
9 Buttons .. 24

9.1 FWR_RCVR and RCVR_MODE .. 24
10 Digikey sources ... 25
11 Shield pin configuration ... 26

11.1 Configure IO5 as a GPIO input, with pullup resistor disabled ... 26
11.2 Configure IO11 as a GPIO input, with pullup resistor disabled .. 27
11.3 Configure IO7 as a GPIO input, with pullup resistor enabled ... 27
11.4 Configure IO6 as a PWM output .. 28
11.5 Configure IO14 as an ADC input ... 28
11.6 Configure IO18/IO19 for I2C connectivity ... 29
11.7 Configure IO10 through IO13 for SPI connectivity .. 30

 Intel® Edison Kit for Arduino*
February 2015 Hardware Guide
Document Number: 331191-007 3

Figures

Figure 1 Arduino* Uno* pinout ... 7
Figure 2 Intel® Edison kit for Arduino* block diagram .. 13
Figure 3 Intel® Edison kit for Arduino* PWM swizzler .. 15
Figure 4 PWM swizzler on the Intel® Edison kit for Arduino* .. 16
Figure 5 Intel® Edison kit for Arduino* mechanical dimensions .. 17
Figure 6 Intel® Edison kit for Arduino* power distribution network .. 18
Figure 7 Area around antenna ... 21
Figure 8 Inserting an Intel® Edison compute module ... 22
Figure 9 Digikey sources... 25

Tables

Table 1 Product-specific documents ... 6
Table 2 Shield pin GPIO mapping ... 8
Table 3 Arduino* pin mux and pin mode settings ... 9
Table 4 Pin function multiplexing control .. 10
Table 5 GPIO interrupt support ... 11
Table 6 Miscellaneous GPIOs ... 11
Table 7 Pin direction and pullup control ... 12
Table 8 Intel® Edison kit for Arduino* header signal list .. 14
Table 9 Intel® Edison kit for Arduino* PWM swizzler signal assignments ... 15
Table 10 Layout SD card.. 21

Intel® Edison Kit for Arduino*
Hardware Guide February 2015
4 Document Number: 331191-007

Revision History
Revision Description Date
ww32 Initial release August 4, 2014

ww34 Minor edits. August 20, 2014

ww36 Removed a column from Table 2. September 5, 2014

001 First public release. September 9, 2014

002 Minor corrections. September 15, 2014

003 Added product overview chapter and shield pin configuration chapter. September 18, 2014

004 Updated sections on software recovery mode, pin function mux controls, and LEDs. December 1, 2014

005 Reversed high-low sequence of gpio214 in shield pin configuration section. December 11, 2014

006 Minor corrections. January 30,2015

007 Minor corrections. February 5, 2015

 §

 Intel® Edison Kit for Arduino*
February 2015 Hardware Guide
Document Number: 331191-007 5

Shield pin configuration

1 Introduction
This document describes the hardware interface of the Intel® Edison kit for Arduino*.

The kit contains external input/output pin connections which may be configured to be used in a variety of
interfacing modes, such as GPIO, PWM, SPI, I2C, ADC, for compatibility with Arduino* Uno* shield hardware. This
document describes the pin functions available, detailed GPIO pin mapping for pin control and I/O, and use of
Linux command line tools to configure the external I/O pin functions correctly for the desired mode of operation.

1.1 Software requirements
• Intel® Edison kernel and BSP.
• Access to the Linux command line on an Intel® Edison compute module.

1.2 Terminology
Term Definition
PWM Pulse width modulation

GPIO General purpose input/output

ADC Analog to digital converter

SPI Serial peripheral interface

I2C Inter-integrated circuit

1.3 References
Table 1 Product-specific documents

Reference Name Number/location
331188 Intel® Edison Board Support Package User Guide

331189 Intel® Edison Compute Module Hardware Guide

331190 Intel® Edison Breakout Board Hardware Guide

331191 Intel® Edison Kit for Arduino* Hardware Guide (This document)

331192 Intel® Edison Native Application Guide

329686 Intel® Galileo and Intel® Edison Release Notes

[GSG] Intel® Edison Getting Started Guide W: http://www.intel.com/support/edison/sb/CS-035336.htm
M: http://www.intel.com/support/edison/sb/CS-035344.htm
L: http://www.intel.com/support/edison/sb/CS-035335.htm

331438 Intel® Edison Wi-Fi Guide

331704 Intel® Edison Bluetooth* Guide

 §

Intel® Edison Kit for Arduino*
Hardware Guide February 2015
6 Document Number: 331191-007

http://www.intel.com/support/edison/sb/CS-035336.htm
http://www.intel.com/support/edison/sb/CS-035344.htm
http://www.intel.com/support/edison/sb/CS-035335.htm

Shield pin configuration

2 Product Overview
The 20 Arduino*-compatible shield I/O pins on the Intel® Edison kit for Arduino* are numbered IO0-IO19 (Figure 1).
All pins support basic GPIO functionality. Some of the pins also support PWM, ADC, SPI or I2C functions. Selection
of different pin functions on the Intel® Edison kit for Arduino* is achieved through use of SoC pin control interfaces
and GPIO output signals dedicated for multiplexing control. The following sections detail the mapping of each of
the GPIO pins available on the Intel® Edison compute module to their respective functions, which can be broadly
categorized as follows (see Figure 1):

• External GPIO. Used for digital input/output signaling via the external shield pins.
• Pin multiplexing control. Used for selecting different functions available on a given shield pin.
• Pin buffer (level-shifter) direction control. Used to configure the buffer on a given shield pin for input or

output.
• Pin pullup resistor control. Used to enable/disable a pullup resistor on a given shield pin.

To use any of the supported functions on a shield pin, it is first necessary to configure the multiplexing, buffer
direction, and pullup resistor controls applicable to that pin.

Figure 1 Arduino* Uno* pinout

 Intel® Edison Kit for Arduino*
February 2015 Hardware Guide
Document Number: 331191-007 7

Shield pin configuration

2.1 Shield pin GPIO mapping
Table 2 describes the mapping of GPIO and PWM pin numbers (in Linux) to shield I/O pins. The following details
are included:

• Shield pin. Digital I/O pin number as per Arduino* Uno* pin numbering scheme.
• GPIO (Linux). The pin number assigned under Linux.
• Muxed functions. Other signals available on this shield pin, as they appear on the schematic.

Table 2 Shield pin GPIO mapping

Shield pin GPIO (Linux) PWM (Linux) Muxed functions Notes
IO0 130 UART1_RXD

IO1 131 UART1_TXD

IO2 128 UART1_CTS Note 1.

IO3 12 0 PWM0 Note 2.

IO4 129 UART1_RTS Note 1.

IO5 13 1 PWM1 Note 2.

IO6 182 2 PWM2 Note 2.

IO7 48 ─

IO8 49 ─

IO9 183 3 PWM3 Note 2.

IO10 41 ?? SPI_2_SS1

I2S_2_FS Note 1.

PWM4_OUT Note 2.

IO11 43 ?? SPI_2_TXD

I2S_2_TXD Note 1.

PWM5_OUT Note 2.

IO12 42 SPI_2_RXD

I2S_2_RXD Note 1.

IO13 40 SPI_2_CLK

I2S_2_CLK Note 1.

IO14 44 AIN0

IO15 45 AIN1

IO16 46 AIN2

IO17 47 AIN3

IO18 14 AIN4

I2C_6_SDA

IO19 165 AIN5

I2C_6_SCL
1 Some additional functions are available on certain SoC pins, such as I2S and UART flow control, but they are not currently

supported by the Arduino library. However, it may be possible to use these from Linux.
2 Depends on PWM swizzler. The SoC offers only four PWM pins. A jumper pin matrix labeled “PWM swizzler” on the baseboard

allows these four pins to be connected to any subset of the six shield-header pins normally used for PWM. From the factory,
IO3, IO5, IO6, and IO9 will be connected to the four available SoC PWM pins as described above. You can manually alter
these to connect IO10 or IO11.

Intel® Edison Kit for Arduino*
Hardware Guide February 2015
8 Document Number: 331191-007

Shield pin configuration

2.2 Pin function multiplexing control (summary)
All GPIO pins on the Arduino* header require some internal GPIOs to be set up before the pin is usable. This is
usually as simple as setting an output enable, pullup enable, and mode. However, some pins have extra
functionality such as SPI, PWM, or I2C, so these pins need extra multiplexing (muxing) in order to be usable.

Table 3 shows this such that a programmer can easily see all the muxing pins affected for a given Arduino* header
pin. The color codes in the table show related boxes. For example, the blue boxes are meant to show the
relationship between the pin mux pins and the pin modes. This table is a synopsis of the more detailed tables
below, which contain extra information, such as schematic pin numbers. For most needs, this synopsized table
should suffice.

Table 3 Arduino* pin mux and pin mode settings

 Linux
GPIO
pin

GPIO pin mux SoC pin modes Output enable
(high = output)

Pullup
enable

Linux pin 0 (low) 1 (high) 0 1 Linux Linux
IO0 130 GPIO UART 248 216

IO0 130 GPIO UART 248 216

IO1 131 GPIO UART 249 217

IO2 128 GPIO UART 250 218

IO3 12 GPIO PWM 251 219

IO4 129 GPIO UART 252 220

IO5 13 GPIO PWM 253 221

IO6 182 GPIO PWM 254 222

IO7 48 GPIO 255 223

IO8 49 GPIO 256 224

IO9 183 GPIO PWM 257 225

IO10 41 263 PWM see 240 GPIO I2S or SPI 258 226

 240 GPIO or I2S GPIO or SPI_FS

IO11 43 262 PWM see 241 GPIO I2S or SPI 259 227

 241 GPIO or I2S GPIO or SPI TXD

IO12 42 242 GPIO or I2S GPIO or SPI RXD GPIO I2S or SPI 260 228

IO13 40 243 GPIO or I2S GPIO or SPI CLK GPIO I2S or SPI 261 229

IO14 (A0) 44 200 GPIO A0 GPIO 232 208

IO15 (A1) 45 201 GPIO A1 GPIO 233 209

IO16 (A2) 46 202 GPIO A2 GPIO 234 210

IO17 (A3) 47 203 GPIO A3 GPIO 235 211

IO18 (A4) 14 204 GPIO or I2C SDA A4 GPIO I2C-6 236 212

IO19 (A5) 165 205 GPIO or I2C SCL A5 GPIO I2C-6 237 213

Note: Before setting up any muxing, set pin 214 (TRI_STATE_ALL) to HIGH, make all of your changes, then set
pin 214 to LOW.

 Intel® Edison Kit for Arduino*
February 2015 Hardware Guide
Document Number: 331191-007 9

Shield pin configuration

2.3 Pin function multiplexing control (detailed)
Table 4 lists the GPIO outputs dedicated to pin multiplexing control. Different functions may be selected for
specific shield I/O pins by setting these GPIO outputs to 0/1 (low/high). Additionally, some of the SoC GPIO pins
also feature internal mux options. These are listed as “SoC Pin Modes”.

Currently, these are configured by setting the required pin mode for the corresponding SoC GPIO pin N, via
/sys/kernel/debug/gpio_debug/gpioN/current_pinmux, to “mode[0/1/2/...]”

Table 4 Pin function multiplexing control
Shiel
d pin

GPIO pin mux SoC pin modes

Pin Linux 0 (low) 1 (high) Power-on default Pin Linux 0 1 2

IO0 - GP130 130 GPIO UART

IO1 - GP131 131 GPIO UART

IO2 - GP128 128 GPIO UART

IO3 - GP12 12 GPIO PWM

IO4 - GP129 129 GPIO UART

IO5 - GP13 13 GPIO PWM

IO6 - GP182 182 GPIO PWM

IO7 - GP48 48 GPIO

IO8 - GP49 49 GPIO

IO9 - GP183 183 GPIO PWM

IO10 U34_ IO1.7 263 PWM4_OUT GP41 Pulled down input GP41 41 GPIO I2S

SSP5_FS_1

U16_ IO1.0 240 GP41 SSP5_FS_1 Pulled up input 1 GP111 111 GPIO SPI

IO11 U34_ IO1.6 262 PWM5_OUT GP43 Pulled down input GP43 43 GPIO I2S

SSP5_TXD GP115 115 GPIO SPI

U16_ IO1.1 241 GP43 SSP5_TXD Pulled up input 1

IO12 U16_ IO1.2 242 GP42 SSP5_RXD Pulled up input 1 GP42 42 GPIO I2S

GP114 114 GPIO SPI

IO13 U16_ IO1.3 243 GP40 SSP5_CLK Pulled up input 1 GP40 40 GPIO I2S

GP109 109 GPIO SPI

IO14 U17_ IO0.0 200 GP44 A0 Pulled up input 1 GP44 44 GPIO

IO15 U17_ IO0.1 201 GP45 A1 Pulled up input 1 GP45 45 GPIO

IO16 U17_ IO0.2 202 GP46 A2 Pulled up input 1 GP46 46 GPIO

IO17 U17_ IO0.3 203 GP47 A3 Pulled up input 1 GP47 47 GPIO

IO18 U17_ IO0.4 204 GP14 A4 Pulled up input 1 GP14 14 GPIO I2C-6 I2C-8

I2C6_SCL GP28 28 GPIO

IO19 U17_ IO0.5 205 GP165 A5 Pulled up input 1 GP165 165 GPIO I2C-6 I2C-8

I2C6_SDA GP27 27 GPIO
1. These pins are pulled up inputs at power-on. This effectively enables the mux switches (i.e. mux function 1 is selected).

Intel® Edison Kit for Arduino*
Hardware Guide February 2015
10 Document Number: 331191-007

Shield pin configuration

2.4 GPIO interrupt support
All GPIO inputs on the Intel® Edison platform are interrupt-capable, and all interrupt types are supported on all
inputs. Table 5 lists the specific edge- and level-triggered interrupt types that are supported on each pin.

Table 5 GPIO interrupt support

Shield pin GPIO Edge-triggered Level-triggered 1

Linux Rising Falling Both Low High
IO0 130 Y Y Y Y Y

IO1 131 Y Y Y Y Y

IO2 128 Y Y Y Y Y

IO3 12 Y Y Y Y Y

IO4 129 Y Y Y Y Y

IO5 13 Y Y Y Y Y

IO6 182 Y Y Y Y Y

IO7 48 Y Y Y Y Y

IO8 49 Y Y Y Y Y

IO9 183 Y Y Y Y Y

IO10 41 Y Y Y Y Y

IO11 43 Y Y Y Y Y

IO12 42 Y Y Y Y Y

IO13 40 Y Y Y Y Y

IO14 44 Y Y Y Y Y

IO15 45 Y Y Y Y Y

IO16 46 Y Y Y Y Y

IO17 47 Y Y Y Y Y

IO18 14 Y Y Y Y Y

IO19 165 Y Y Y Y Y
1. Level-triggered interrupts are not supported by the Arduino* library, a limitation of the GPIO sysfs interface.

2.5 Miscellaneous GPIOs
The GPIOs listed in Table 6 are used for other platform functions and for Arduino shield compatibility.

Table 6 Miscellaneous GPIOs

Function GPIO pin GPIO Linux Direction Power-on default 1 Initial setup
TRI_STATE_ALL U17_IO1.6 214 Output Pulled up input*

SHLD_RESET U17_IO1.7 215 Output Pulled up input*

SHLD_RESET U17_IO0.7 207 Input Pulled up input*
1 These pins are pulled up inputs at power-on. In this state, they have the same effect as outputs set high.

 Intel® Edison Kit for Arduino*
February 2015 Hardware Guide
Document Number: 331191-007 11

Shield pin configuration

2.6 Pin direction and pullup control
For most shield pins on the Intel® Edison kit for Arduino*, there is a buffer/level-shifter which needs to be
configured for input or output direction, and an external 47 kohm pullup/pulldown resistor, which may be
optionally enabled. Both are driven by dedicated GPIO outputs, listed in Table 7. When configuring a shield pin as
an output, we advise configuring the buffer for output before setting the SoC GPIO pin direction to output. To
disconnect the external pullup/pulldown resistors, it is necessary to configure as high-impedance inputs the GPIOs
that drive them.

Note also that the GPIO signals from the PCAL9555A GPIO expanders have internal 100 kohm pullup resistors,
which are connected to the GPIO pins by default. These need to be disabled in many cases, by configuring those
pins as high-impedance inputs.

Table 7 Pin direction and pullup control

Shield
pin

Output enable GPIO (high = output) Pullup enable GPIO

Pin Linux Power-on default 1 Pin Linux Power-on default 2
IO0 U34_ IO0.0 248 Pulled-down input U39_IO0.0 216 Pulled up input

IO1 U34_ IO0.1 249 Pulled-down input U39_IO0.0 217 Pulled up input

IO2 U34_ IO0.2 250 Pulled-down input U39_IO0.0 218 Pulled up input

IO3 U34_ IO0.3 251 Pulled-down input U39_IO0.0 219 Pulled up input

IO4 U34_ IO0.4 252 Pulled-down input U39_IO0.0 220 Pulled up input

IO5 U34_ IO0.5 253 Pulled-down input U39_IO0.0 221 Pulled up input

IO6 U34_ IO0.6 254 Pulled-down input U39_IO0.0 222 Pulled up input

IO7 U34_ IO0.7 255 Pulled-down input U39_IO0.7 223 Pulled up input

IO8 U34_ IO1.0 256 Pulled-down input U39_IO0.7 224 Pulled up input

IO9 U34_ IO1.1 257 Pulled-down input U39_IO0.7 225 Pulled up input

IO10 U34_ IO1.2 258 Pulled-down input U39_IO0.7 226 Pulled up input

IO11 U34_ IO1.3 259 Pulled-down input U39_IO0.7 227 Pulled up input

IO12 U34_ IO1.4 260 Pulled-down input U39_IO0.7 228 Pulled up input

IO13 U34_ IO1.5 261 Pulled-down input U39_IO0.7 229 Pulled up input

IO14 U16_ IO0.0 232 Pulled-down input U17_ IO1.0 208 Pulled up input

IO15 U16_ IO0.1 233 Pulled-down input U17_ IO1.1 209 Pulled up input

IO16 U16_ IO0.2 234 Pulled-down input U17_ IO1.2 210 Pulled up input

IO17 U16_ IO0.3 235 Pulled-down input U17_ IO1.3 211 Pulled up input

IO18 U16_ IO0.4 236 Pulled-down input U17_ IO1.4 212 Pulled up input

IO19 U16_ IO0.5 237 Pulled-down input U17_ IO1.5 213 Pulled up input
1 These pins are externally pulled down inputs at power-on. This effectively selects input direction for level shifters.
2 These pins are internally pulled up inputs at power-on. This effectively enables pullups (as 100 kohm + 47 kohm in series).

 §

Intel® Edison Kit for Arduino*
Hardware Guide February 2015
12 Document Number: 331191-007

Shield pin configuration

3 High-Level Functional Description
The Intel® Edison kit for Arduino*expansion board is designed to be hardware and software pin-compatible with
Arduino shields designed for the Uno R3. Digital pins 0 to 13 (and the adjacent AREF and GND pins), analog inputs
0 to 5, the power header, ICSP header, and the UART port pins (0 and 1) are all in the same locations as on the
Arduino Uno R3. This is also known as the Arduino 1.0 pinout. Additionally, the Intel® Edison kit for Arduino* board
includes a micro SD card connector, a micro USB device port connected to UART2, and a combination micro USB
device connector and dedicated standard size USB 2.0 host Type-A connector (selectable via a mechanical
microswitch).

Figure 2 Intel® Edison kit for Arduino* block diagram

3.3V <-> 5V Level
Translation provided
on board between
all Edison I/O and

Shield Headers

UART 2

Host USB
Full size
Type-A

USB 0TG

Client
USB

Micro
Type-B

7 to 15 V Brick
Power Supply

FLA
S

H
A

D
C SPI0

SPI

1 RX 

4 ~IO3

7 ~IO6

5 IO4
6 ~IO5

8 IO7

3 IO2
2 TX 

1 IO8

4 ~IO11

7 GND

5 IO12
6 IO13

8 AREF

3 ~IO10
2 ~IO9

9 SDA
10 SCL

VIN 8

5V 5

IOREF 2

3.3V 4
RESET 3

1

GND 6
GND 7

A5 6

A2 3
A1 2
A0 1

A3 4
A4 5

SD

Micro SD
Connector

UART 1

5V

VIN (7 to 15 V)

I2C

3.3V

D
IGITA

L (PW
M

~)

AN
A

LO
G

IN
PO

W
ER

GPIO

GPIO

SPI

2

6

6

2

4 ~IO11
6 GND

2 5V

RESET 5
IO13 3
IO12 1

ICSP

IOREF Jumper
selects 3.3 or 5 V
Shield Operation

Intel® Edison

FLA
S

H
M

U
X

Level
Shifter

Level Shifter
Port

Expander

Port
Expander

I2C

DIR

GPIO6

SEL &PULL UP

Level Shifter

Level Shifter

FLA
S

H
M

U
X

2

4

Port
Expander

Port
Expander

DIR &PULL UP

JU
M

PER
SLECTIO

N 3

I2C

3

U
SB M

U
X

Client
USB

Micro
Type-B

UART – USB
FTDI

 Intel® Edison Kit for Arduino*
February 2015 Hardware Guide
Document Number: 331191-007 13

Shield pin configuration

3.1 Intel® Edison kit for Arduino* header signal list
The Intel® Edison kit for Arduino* digital signals can be configured as input or output. When programmed as an
input, a GPIO can serve as an interrupt. The Intel® Edison kit for Arduino* 1.8 V I/O are translated to 3.3 or 5 V using
SN74LVC1T45 dual supply bus transceivers with 3 state outputs. Both outputs go tristate if either supply rail is at
ground. The port direction is referenced to VCCA. The drive level for the transceiver is: ±4 mA at 1.8 V, ±24 mA at
3.3 V, and ±32 mA at 5 V.

Note: Drive level at 1.8 V is for reference only – pertains to drive level towards the Intel® Edison compute module.

Table 8 Intel® Edison kit for Arduino* header signal list

Header Arduino pin name Signal function
Power N/C Not connected

Power IOREF Shield I/O reference voltage (select 3.3 or 5 V via jumper on board)

Power RESET Shield reset (programmable via software or manual push button)

Power 3.3 V System 3.3 V output

Power 5 V System 5 V output

Power GND Ground

Power GND Ground

Power VIN System input power (7 to 15 V)

Analog A0 Analog input or digital I/O

Analog A1 Analog input or digital I/O

Analog A2 Analog input or digital I/O

Analog A3 Analog input or digital I/O

Analog A4 / SDA Analog input, digital I/O, or I2C data (also connected to digital header)

Analog A5 / SCL Analog input, digital I/O, or I2C data (also connected to digital header)

Digital SCL I2C clock

Digital SDA I2C data

Digital AREF ADC reference voltage (select AREF or IOREF via jumper J8 on board)

Digital GND Ground

Digital 13 / SCK Digital I/O, or SPI clock

Digital 12 / MISO Digital I/O, or SPI receive data

Digital ~11 / MOSI Digital I/O, SPI send data, or PWM (configured with PWM swizzler)

Digital ~10 Digital I/O, SPI signal select, or PWM (configured with PWM swizzler)

Digital ~9 Digital I/O, PWM (configured with PWM swizzler)

Digital 8 Digital I/O

Digital 7 Digital I/O

Digital ~6 Digital I/O, PWM (configured with PWM swizzler)

Digital ~5 Digital I/O, PWM (configured with PWM swizzler)

Digital 4 Digital I/O

Digital ~3 Digital I/O, PWM (configured with PWM swizzler)

Digital 2 Digital I/O

Digital 1 / TX  Digital I/O

Digital 0 / RX  Digital I/O

ICSP MISO SPI receive data (connected to digital pin 12)

ICSP 5V System 5 V output

ICSP SCK SPI clock (connected to digital pin 13)

ICSP MOSI SPI send data (connected to digital pin 11)

ICSP RESET Shield reset (programmable via software or manual push button)

ICSP GND Ground

Intel® Edison Kit for Arduino*
Hardware Guide February 2015
14 Document Number: 331191-007

Shield pin configuration

3.2 Intel® Edison kit for Arduino* PWM swizzler
There are four available GPIO that can be configured as PWM outputs. The PWM features are:

• The PWM Output Frequency and Duty Cycle can be estimated by the equations:
• Target frequency ~= 19.2 MHz * Base_unit value / 256
• Target PWM Duty Cycle ~= PWM_on_time_divisor / 256

The four PWM sources are wired to a PWM “swizzler”. This pin header arrangement allows the four PWM sources to
be routed to any four of the six Arduino header pins. Figure 3 shows the PWM swizzler.

Figure 3 Intel® Edison kit for Arduino* PWM swizzler

The four PWM sources from the Intel® Edison compute module (GP12_PWM0, GP13_PWM1, GP182_PWM2, and
GP183_PWM3) can be configured to drive four of the six Arduino* header PWMs. Each Intel® Edison kit for Arduino
PWM can be jumpered to one of three Arduino PWMs. For example, GP12_PWM0 can be jumpered to PWM0_OUT,
PWM2_OUT, or PWM1_OUT.

Note: Moving the PWM jumpers from the default configuration makes an I/O pin unavailable for use.

Arduino* multiplexing has secondary multiplexing options of SPI (or GPIO). No other PWM has these secondary
multiplexing options. Therefore, if the four Intel® Edison compute module PWMs are used and are not connected to
the first four Arduino* PWM pins, then those unused pins of the first four pins cannot be used as a GPIO. They will
have any function; they cannot be inputs or outputs (Table 9).

Table 9 Intel® Edison kit for Arduino* PWM swizzler signal assignments

Digital pin Uno Uno Edison I/O Edison PWM
11 IO PWM(5) GP43 (SSP2_TXD) PWM3

10 IO PWM(4) GP41 (SSP2_FS0) PWM3, PWM2

9 IO PWM(3) GP183_PWM3 PWM3, PWM2, PWM1

6 IO PWM(2) GP182_PWM2 PWM2, PWM1, PWM0

5 IO PWM(1) GP13_PWM1 PWM1, PWM0

3 IO PWM(0) GP12_PWM0 PWM0

The factory default jumper configuration of Intel® Edison kit for Arduino* has digital pins 3, 5, 6, and 9 attached to
GPx_PWMx. These pins can be configured to be either a GPIO or a PWM output. The swizzler allows the four Intel®
Edison compute module PWMs to be mapped to the six Arduino* pins as shown in the last column of Table 9. For
example, if PWM0 is mapped to digital pin 5, then there is no Intel® Edison kit for Arduino* pin available to connect
to Digital pin 3. So this pin no longer has a function. If it is driven as an output, it will output high. If it is driven as an
input, the signal is lost in the swizzler.

The default configuration is DIG3 = GP12_PWM0, DIG5 = GP13_PWM1, DIG6 = GP182_PWM2, and DIG9 =
GP183_PWM3. This requires jumpers on J12 1-2, and J12 3-4, J11 1-2, and J11 3-4, as shown in Figure 4.

 Intel® Edison Kit for Arduino*
February 2015 Hardware Guide
Document Number: 331191-007 15

Shield pin configuration

Figure 4 PWM swizzler on the Intel® Edison kit for Arduino*

3.3 Intel® Edison kit for Arduino* analog inputs
The analog inputs are fed to an ADS7951 A/D converter. This device has the following features:

• 20 MHz clock rate
• 12-bit A/D conversion
• 1 MHz sample rate
• 70 dB signal to noise ratio
• 0 to 3.3 V or 0 to 5 V input range (select either AREF or IOREF via jumper J8 onboard)

The analog inputs are multiplexed with digital I/O using SN74LVC2G53 analog switches. These switches isolate the
digital I/O from the analog input to prevent crosstalk. The SN74LVC2G53 also has an inhibit pin that places the I/O
in a tristate condition. The switch also has low on state resistance of 15 ohm at 4.5 V VCC.

3.4 Intel® Edison kit for Arduino* signal pullup resistors
The analog and digital pins can be configured to have an external pull-up resistor connected. The pullup value is
fixed at 47 kohm.

3.5 Intel® Edison kit for Arduino* USB interface
The Intel® Edison compute module has a single USB 2.0 interface. This interface is the primary method for
downloading code. The Intel® Edison compute module is designed to support OTG, using the ID signal. Circuitry on
the Intel® Edison kit for Arduino* board uses a USB multiplexer, and an external switch to configure the USB
interface as a host port or device port. SW1 is a slider switch which selects between host mode and device mode.
When the slider is switched towards the USB standard size Type A connector, the Intel® Edison compute module
will go to host mode. When the switch is towards the micro USB Type B connector, the Intel® Edison compute
module will go to device mode.

Note: USB host mode always requires use of an external power adapter.

Intel® Edison Kit for Arduino*
Hardware Guide February 2015
16 Document Number: 331191-007

Shield pin configuration

3.6 Intel® Edison kit for Arduino* power supply
The Intel® Edison compute module is a low power device. In general it will not draw more than 200 mA
(approximately 430 mA (final value TBD) when transmitting over Wi-Fi) from the main power source. Therefore, the
Intel® Edison kit for Arduino* may run on USB power (when configured as a device), or off an external power
adapter from 7 to 15 V.

Power from the external power adapter goes to a DC-DC converter and down converted to 5 V. The 5 V rail is
diode-ORed with the USB micro B VBUS rail. This power goes to a DC-DC converter which down converts the power
to 4.4 V. This voltage is in the safe range for the Intel® Edison compute module VSYS. The VSYS power range is
3.15 V min to 4.5 V max. This allows VSYS to run off a standard lithium ion battery.

The onboard charger IC is configured to detect the input power source and to limit the input power to either
500 mA (if connected to USB micro B port) or up to 1 A if connected to the DC power jack. The charger is
programmed to charge at 100 mA. This charger is designed to charge standard lithium ion batteries with 4.2 V
maximum charging voltage. End-users are responsible for choosing a suitable battery and following all safety
precautions, to assure overcharging or charging when the battery temperature is too high is avoided.

For low power applications (those shields running off 3.3 V) a lithium ion battery (3.0 to 4.3 Vmax) can be attached
to J2, which will power the Intel® Edison kit for Arduino and provide 100 mA of 3.3 V to the shield.

Some considerations of the power distribution in the Intel® Edison kit for Arduino*:

• Due to the diode ORing of the 5 V DC/DC and the VBUS input, means the 5 V power to the shield header will
be nominally below 5 V. In the case of VBUS the voltage may be as low as 4.4 V (4.75 V VBUS min – 0.3 V
diode drop. In the case of external power adapter 4.7 V.

• USB host mode always requires use of an external power adapter.

3.7 Intel® Edison kit for Arduino* expansion mechanicals
Figure 5 lists the dimensions (in thousands of inches and [mm]) of the Intel® Edison kit for Arduino* board.

Figure 5 Intel® Edison kit for Arduino* mechanical dimensions

DS3

DS1

DS2

 §

 Intel® Edison Kit for Arduino*
February 2015 Hardware Guide
Document Number: 331191-007 17

Shield pin configuration

4 Powering the Intel® Edison kit for Arduino*
You can power the Intel® Edison kit for Arduino* using any of the following:

• an external power supply on J1;
• DCIN via shield header pin VIN;
• a USB cable via micro USB connector J16; or
• a lithium-ion battery connected to J2.

When power is applied to J1 or VIN, the external power must be in the range of 7 to 17 V. The power is converted
to 5 V via a switching power supply, which powers the rest of the system. This supply was designed for a 1 A
continuous supply. Higher currents will generate more power losses and may thermally damage the switcher. The
switcher does have internal short circuit protection, and thermal shutdown protection. The end-user should not
rely on thermal not short circuit protection.

Figure 6 shows the power distribution network of the Intel® Edison kit for Arduino*.

Figure 6 Intel® Edison kit for Arduino* power distribution network

Power from the 5 V switcher is diode-ORed with power from the USB connector. This arrangement allows the Intel®
Edison kit for Arduino* to run off external power or USB power. This rail is used to power the shields, the SD card
slot, and a 4.35 V switcher. The total current on this rail should be limited to 1 A maximum continuous.

The 4.35 V rail powers a battery charger and the Intel® Edison compute module. The 4.3 V supply is also designed
to generate 1 A, and has the same protections (thermal and short circuit) as the 5 V supply.

The charger is designed to only accept 1 A maximum from the 4.35 V rail, and will charge a battery at 100 mA. The
charger will supply power from the 4.35 V input or from the battery (if attached). The charger will charge the
battery (from the 4.35 V supply) autonomously using whatever power is left over from powering the Intel® Edison
kit for Arduino.

For low voltage systems, the Intel® Edison compute module can provide 3.3 V at 250 mA to the shields. The user
should limit the current from the Intel® Edison kit for Arduino* 3.3 V rail. Higher currents will cause the 3.3 V output
to droop (due to IR losses), and may cause excessive heating of the Intel® Edison compute module.

The Intel® Edison compute module is a low power device. It normally operates at 200 mA. During Wi-Fi transmit
bursts, the current could reach 600 mA for milliseconds. The sum of the Intel® Edison kit for Arduino* current,
recharging, SD card, and shield power could exceed the 500 mA specification. This could cause triggering of the
USB power switch within a PC, causing loss of USB functionality until the PC is restarted.

Intel® Edison Kit for Arduino*
Hardware Guide February 2015
18 Document Number: 331191-007

Shield pin configuration

Some considerations of the power distribution in the Intel® Edison kit for Arduino*:

• There is a diode ORing of the 5 V DC/DC and the VBUS input. In the case of powering the Intel® Edison kit for
Arduino* from VBUS, the shield voltage may be as low as 4.4 V (4.75 V VBUS min – 0.3 V diode drop). In the
case of external power adapter, voltage to the shield will be 5 V ±2%.

• Using the Intel® Edison compute module as a USB HOST requires use of an external adapter.
• End-users are responsible for choosing a suitable battery and following all safety precautions, to prevent

overcharging or charging when the battery temperature is too high. The battery should be at least 200 mAH
capacity due to the 100 mA charging current. We recommend battery packs with internal protection circuits.

4.1 Boot voltage selection – DCIN signal
DCIN is a signal that indicates whether the Intel® Edison compute module is being powered from a battery or from
an external power source. DCIN also sets the voltage level required on VSYS in order to boot. When DCIN is floating
or tied to ground, the voltage on VSYS must rise from 2.5 to 3.5 V in 10 ms; otherwise the boot is aborted. When
the boot is aborted, power must be cycled below 2.5 V. If DCIN is connected to VSYS, the Intel® Edison compute
module will start to boot when VSYS is above 2.5 V for 100 ms.

Note: When DCIN is connected to VSYS, boot will occur whenever the voltage is above 2.8 V for 100 ms. The
DCIN signal is attached to VSYS on the PCB.

Note: The absolute minimum voltage to assure Wi-Fi and Bluetooth functionality is 3.15 V.

 §

 Intel® Edison Kit for Arduino*
February 2015 Hardware Guide
Document Number: 331191-007 19

Shield pin configuration

5 Batteries
The rechargers chosen on the Intel® Edison kit for Arduino* and the Intel® Edison Breakout Board were designed for
lithium-ion or lithium-polymer batteries. Follow the manufacturer’s guidelines when charging batteries. Generally,
charging current should not exceed 50 to 70% of the rated capacity. For example, a 200 mAH battery should be
charged with 70% • 200 mA = (140 mA).

The Intel® Edison kit for Arduino* has a 100 mA charging current; the Intel® Edison Breakout Board has a 190 mA
charging current.

 §

Intel® Edison Kit for Arduino*
Hardware Guide February 2015
20 Document Number: 331191-007

Shield pin configuration

6 Layout

6.1 Antenna keepout
The area under and around the antenna should be kept free of all components, routes, and ground plane. The
Intel® Edison compute module DXF in white with antenna keepout shown in the Arduino* trace layers. See Figure 7.

Figure 7 Area around antenna

6.2 Layout SD card, I2S, SPI, I2C
Table 10 Layout SD card

Signal parameter Metric (mm) Standard (mils)
Total length L1 0.254 to 101.6 mm 10 to 4000 mils

DATA/CMD/CTRL to CLK maximum pin-to-pin length mismatch ±2.54 mm ±100 mils

Minimum main route spacing ratio 60 × 60 µm. 1:1 trace width/space.

CLK to DATA/CMD/CTRL matching ±200 mils

Characteristic single-ended impedance 42 to 45 ohm (±10%)

Load capacitance 2 to 5 pF

Note: For SPI, total length is 6000 mils; for I2C, total length is 8000 mils.

6.3 LEDs
The Intel® Edison kit for Arduino has three LEDs. (See Figure 5 for locations.)

• DS1 is the reset LED. It will turn on when the Intel® Edison processor is running. When the processor is in
reset and asserting RESET_OUT# low, it will turn off.

• DS2 is the standard LED on the Arduino* board. It runs using the ‘blink’ code or whenever Digital I/O 13 is
asserted High. It can be used as an indicator under direct control.

• DS3 is the battery charging LED. It will turn on when the LTC4067 is charging an attached battery.

 §
 Intel® Edison Kit for Arduino*
February 2015 Hardware Guide
Document Number: 331191-007 21

Shield pin configuration

7 Handling
When assembling an Intel® Edison compute module to an Arduino* board, handle the Intel® Edison compute
module by the PCB edges. Avoid holding or exerting pressure to the shields. To mate the Intel® Edison compute
module to the Arduino* board, apply pressure directly above the connector and to the left corner, as shown in
Figure 8.

Figure 8 Inserting an Intel® Edison compute module

 §

Intel® Edison Kit for Arduino*
Hardware Guide February 2015
22 Document Number: 331191-007

Shield pin configuration

8 Debug UART and Low-Power Sleep Mode
When the Intel® Edison compute module goes into low-power sleep, the UART internal FIFO and interface is
powered down. Therefore, a two-wire UART (Rx/Tx) will lose the first received character whenever the Intel® Edison
compute module is in low-power sleep mode. In order to avoid this condition, when sleep mode is enabled, a four-
wire UART (Rx, Tx, CTS, and RTS) is required.

Note: Low-power sleep mode is disabled by default in the latest image. To address this, update your firmware as
explained in the Getting Started Guide at https://communities.intel.com/docs/DOC-23147.

 §

 Intel® Edison Kit for Arduino*
February 2015 Hardware Guide
Document Number: 331191-007 23

https://communities.intel.com/docs/DOC-23147

Shield pin configuration

9 Buttons
This section explains the software functionality of the Intel® Edison kit for Arduino* buttons.

The Intel® Edison kit for Arduino* has the following buttons:

• System reset. Pressing the system reset button (SW1UI5) will reset the Intel® Edison compute module, and
reset the I/O expanders, setting all the shield pins to high impedance state with no pullups.

• Shield reset. Pressing the shield reset button (SW1UI1) will pull the shield signal reset to the active low
state. It does not affect the state of the Intel® Edison compute module or its I/O.

• Power button. The power button (SW1UI2) is configured by software. Pressing and holding the power
button will produce different results depending on the current state of the Intel® Edison compute module
and the duration of the hold:
− When the Intel® Edison device is completely powered down, pressing and holding the power button for

3 seconds will power up the device and boot up the Intel® Edison compute module.
− When the Intel® Edison device is running, pressing and holding the power button for more than

2 seconds but less than 7 seconds will put the Intel® Edison device into AP (access point) mode. This
action enables the “one-time setup” (same as configure_edison --enableOneTimeSetup).

− When the Intel® Edison device is running, pressing and holding the power button for 10 seconds or
more will cause the Intel® Edison compute module to power down. This is similar to a hard shutdown,
which cuts the power supply to the compute module.

9.1 FWR_RCVR and RCVR_MODE
SW1UI3 and SW1UI4 are for factory use only.

 §

Intel® Edison Kit for Arduino*
Hardware Guide February 2015
24 Document Number: 331191-007

Shield pin configuration

10 Digikey sources
Figure 9 shows some third-party accessories you can use.

Figure 9 Digikey sources

Mating connector 2.0 mm

DF40C(2.0)-70DS-0.4V(51) - H11908CT-ND Cut tape
DF40C(2.0)-70DS-0.4V(51) H11908TR-ND Tape and Reelt

Mini-breakout power jack PJ-002BH-SMT-TR
CP-002BHPJCT-ND Cut tape

PJ-002BH-SMT-TR CP-002BHPJTR-ND Tape and reel

Mini-breakout USB adapter cable

USB A female to Micro A male 10-00649 839-1105-ND
Mini-breakout male header

2x14 M20-9980745 952-1932-ND

 §

 Intel® Edison Kit for Arduino*
February 2015 Hardware Guide
Document Number: 331191-007 25

http://www.digikey.com/product-detail/en/DF40C(2.0)-70DS-0.4V(51)/H11908CT-ND/2530299
http://www.digikey.com/product-detail/en/DF40C(2.0)-70DS-0.4V(51)/H11908CT-ND/2530299
http://www.digikey.com/product-detail/en/DF40C(2.0)-70DS-0.4V(51)/H11908TR-ND/2530296
http://www.digikey.com/product-detail/en/DF40C(2.0)-70DS-0.4V(51)/H11908TR-ND/2530296
http://www.digikey.com/product-detail/en/PJ-002BH-SMT-TR/CP-002BHPJTR-ND/404626
http://www.digikey.com/product-detail/en/PJ-002BH-SMT-TR/CP-002BHPJTR-ND/404626
http://www.tensility.com/pdffiles/10-00649.pdf
http://www.digikey.com/product-detail/en/10-00649/839-1105-ND/2766326

Shield pin configuration

11 Shield pin configuration
This chapter will help you configure the Arduino* shield pins.

To configure the Arduino* shield pins, do the following:

 Identify the Arduino* shield pin number of the pin you want to use, in the range IO0-IO19. 1.

 Identify the functions available for the given pin, and select the function you want to use. Typical functions 2.
are GPIO, PWM, UART, I2C, SPI, ADC. Only some functions are available on each pin.

 Determine which GPIO signals, if any, need to be configured to select the correct pin muxing option for the 3.
selected function. Some pins only have a single function, or do not require mux control.

 Determine which GPIO signals, if any, need to be configured to select the pin buffer direction for input or 4.
output, and determine the direction that is required.

 Determine which GPIO signals, if any, need to be configured to select the pullup resistor control, and 5.
whether the pullup resistor should be enabled or disabled. For most pin functions, the pullup resistors
should typically be disabled. For GPIO input functions, the pullup resistor may optionally be enabled or
disabled, according to your needs.

 Export the above GPIO numbers for access in the Linux user-space environment (from the command 6.
shell).

 Configure the above GPIO numbers for output. 7.

 Assert the TRI_STATE_ALL signal to disconnect the shield pins. 8.

 Set the above GPIO numbers to assert their output logic levels as high or low. 9.

 Set the SoC GPIO pin mode for the required functionality. 10.

 Deassert the TRI_STATE_ALL signal to reconnect the shield pins. 11.

11.1 Configure IO5 as a GPIO input, with pullup resistor disabled
To configure IO5 as a GPIO input, with pullup resistor disabled, do the following:

 Refer to Table 2 for the GPIO number. According to Table 2, the GPIO number for IO5 is 13. 1.

 According to Table 4, GPIO 43 pin-mux must be set to mode0 to select the GPIO. 2.

 According to Table 7, GPIO 253 must be set to 0 to disable the output direction for IO5. 3.

 According to Table 7, GPIO 221 must be set as a high-impedance input to disable the external pullup 4.
resistor for IO5.

 According to Table 6, the TRI_STATE_ALL signal is controlled by GPIO 214. 5.

After you have gathered all of this information, enter the following commands in Linux:

echo 13 > /sys/class/gpio/export
echo 253 > /sys/class/gpio/export
echo 221 > /sys/class/gpio/export
echo 214 > /sys/class/gpio/export
echo low > /sys/class/gpio/gpio214/direction
echo low > /sys/class/gpio/gpio253/direction
echo in > /sys/class/gpio/gpio221/direction
echo mode0 > /sys/kernel/debug/gpio_debug/gpio13/current_pinmux
echo in > /sys/class/gpio/gpio13/direction
echo high > /sys/class/gpio/gpio214/direction

You should be able to use IO5 as a GPIO input. For example:

cat /sys/class/gpio/gpio13/value

Intel® Edison Kit for Arduino*
Hardware Guide February 2015
26 Document Number: 331191-007

Shield pin configuration

11.2 Configure IO11 as a GPIO input, with pullup resistor disabled
To configure IO11 as a GPIO input, with pullup resistor disabled, do the following:

 Refer to Table 2 for the GPIO number. According to Table 2, the GPIO number for IO11 is 43. 1.

 According to Table 4, GPIO 262 must be set to 1 to select GPIO/SPI, GPIO 241 must be set to 0 to select 2.
GPIO, and GPIO 43 pin-mux must be set to ‘mode0’ to select GPIO.

 According to Table 7, GPIO 259 must be set to 0 to disable the output direction for IO11. 3.

 According to Table 4, GPIO 227 must be set as a high-impedance input to disable the external pullup 4.
resistor for IO5.

 According to Table 6, the TRI_STATE_ALL signal is controlled by GPIO 214. 5.

After you have gathered all of this information, enter the following commands in Linux:

echo 43 > /sys/class/gpio/export
echo 262 > /sys/class/gpio/export
echo 241 > /sys/class/gpio/export
echo 259 > /sys/class/gpio/export
echo 227 > /sys/class/gpio/export
echo 214 > /sys/class/gpio/export
echo low > /sys/class/gpio/gpio214/direction
echo high > /sys/class/gpio/gpio262/direction
echo low > /sys/class/gpio/gpio241/direction
echo mode0 > /sys/kernel/debug/gpio_debug/gpio43/current_pinmux
echo low > /sys/class/gpio/gpio259/direction
echo in > /sys/class/gpio/gpio227/direction
echo in > /sys/class/gpio/gpio43/direction
echo high > /sys/class/gpio/gpio214/direction

You should be able to use IO11 as a GPIO input. For example:

cat /sys/class/gpio/gpio43/value

11.3 Configure IO7 as a GPIO input, with pullup resistor enabled
To configure IO7 as a GPIO input, with pullup resistor enabled, do the following:

 Refer to Table 2 for the GPIO number. According to Table 2, the GPIO number for IO7 is 48. 1.

 According to Table 7, GPIO 255 must be set to 0 to disable the output direction for IO7. 2.

 According to Table 7, GPIO 223 must be set to output high to enable the external pullup resistor for IO7. 3.

 According to Table 6, the TRI_STATE_ALL signal is controlled by GPIO 214. 4.

After you have gathered all of this information, enter the following commands in Linux:

echo 48 > /sys/class/gpio/export
echo 255 > /sys/class/gpio/export
echo 223 > /sys/class/gpio/export
echo 214 > /sys/class/gpio/export
echo low > /sys/class/gpio/gpio214/direction
echo low > /sys/class/gpio/gpio255/direction
echo high > /sys/class/gpio/gpio223/direction
echo in > /sys/class/gpio/gpio48/direction
echo high > /sys/class/gpio/gpio214/direction

You should be able to use IO7 as a GPIO input. For example:

cat /sys/class/gpio/gpio48/value

 Intel® Edison Kit for Arduino*
February 2015 Hardware Guide
Document Number: 331191-007 27

Shield pin configuration

11.4 Configure IO6 as a PWM output
To configure IO6 as a PWM output, do the following:

 Refer to Table 2 for the GPIO number. According to Table 2, the GPIO number for IO6 is 182. 1.

 According to Table 4, GPIO 182 pin-mux must be set to ‘mode1’ to select PWM. 2.

 According to Table 7, GPIO 254 must be set to 1 to enable the output direction for IO6. 3.

 According to Table 7, GPIO 222 must be set as a high-impedance input to disable the pullup resistor for 4.
IO6.

 According to Table 6, the TRI_STATE_ALL signal is controlled by GPIO 214. 5.

After you have gathered all of this information, enter the following commands in Linux:

echo 254 > /sys/class/gpio/export
echo 222 > /sys/class/gpio/export
echo 214 > /sys/class/gpio/export
echo low > /sys/class/gpio/gpio214/direction
echo high > /sys/class/gpio/gpio254/direction
echo in > /sys/class/gpio/gpio222/direction
echo mode1 > /sys/kernel/debug/gpio_debug/gpio182/current_pinmux
echo high > /sys/class/gpio/gpio214/direction

You should be able to use IO6 as a PWM output. For example:

echo 2 > /sys/class/pwm/pwmchip0/export
echo 2000000 > /sys/class/pwm/pwmchip0/pwm2/duty_cycle
echo 1 > /sys/class/pwm/pwmchip0/pwm2/enable

11.5 Configure IO14 as an ADC input
To configure IO14 as an ADC input, do the following:

 Refer to Table 2 for the GPIO number. According to Table 2, the GPIO number for IO14 is 44. 1.

 According to Table 4, GPIO 200 must be set to 1 to select ADC. 2.

 According to Table 7, GPIO 232 must be set to 0 to disable the output direction for IO14. 3.

 Any GPIO lines directly connected to IO14 should be configured as high-impedance inputs to prevent 4.
possible current leakage. According to Table 7, GPIO 208 is used to enable a pullup resistor for IO14.

 According to Table 6, the TRI_STATE_ALL signal is controlled by GPIO 214. 5.

After you have gathered all of this information, enter the following commands in Linux:

echo 200 > /sys/class/gpio/export
echo 232 > /sys/class/gpio/export
echo 208 > /sys/class/gpio/export
echo 214 > /sys/class/gpio/export
echo low > /sys/class/gpio/gpio214/direction
echo high > /sys/class/gpio/gpio200/direction
echo low > /sys/class/gpio/gpio232/direction
echo in > /sys/class/gpio/gpio208/direction
echo high > /sys/class/gpio/gpio214/direction

You should be able to use IO14 as an ADC input. For example:

cat /sys/bus/iio/devices/iio:device1/in_voltage0_raw

Note: The default state of the mux switches and level-shifters for shield pins IO11 to 13 is inconsistent, and will
impair SPI communication to the ADC if not configured properly. Thus, we recommend following the
instructions elsewhere in this document to fully configure these pins for any of their functions (for

Intel® Edison Kit for Arduino*
Hardware Guide February 2015
28 Document Number: 331191-007

Shield pin configuration

example, SPI or GPIO) before attempting to use the ADC.

11.6 Configure IO18/IO19 for I2C connectivity
To configure IO18 and IO19 for I2C connectivity, do the following:

 Refer to Table 2 for the GPIO numbers. According to Table 2, the GPIO numbers for IO18 and IO19 are 28 1.
and 27, respectively.

 According to Table 4, GPIO 204 must be set to 1 to select GPIO/I2C, and GPIO 28 pin-mux must be set to 2.
‘mode1’ to select I2C for IO18.

 According to Table 4, GPIO 205 must be set to 1 to select GPIO/I2C, and GPIO 27 pin-mux must be set to 3.
‘mode1’ to select I2C for IO19.

 GPIO 14 and GPIO 165 are also connected to the I2C signals, and should be configured as high- 4.
impedance inputs when I2C is in use on these pins, to prevent them driving a signal on the I2C bus.

 According to Table 7, GPIO 236 must be set to 0 to disable the output direction for GPIO 14, and GPIO 237 5.
must be set to 0 to disable the output direction for GPIO 165.

 According to Table 7, GPIO 212 and 213 must be set as high-impedance inputs to disable the pullup 6.
resistors for IO18 and IO19, respectively.

 According to Table 6, the TRI_STATE_ALL signal is controlled by GPIO 214. 7.

After you have gathered all of this information, enter the following commands in Linux:

echo 28 > /sys/class/gpio/export
echo 27 > /sys/class/gpio/export
echo 204 > /sys/class/gpio/export
echo 205 > /sys/class/gpio/export
echo 236 > /sys/class/gpio/export
echo 237 > /sys/class/gpio/export
echo 14 > /sys/class/gpio/export
echo 165 > /sys/class/gpio/export
echo 212 > /sys/class/gpio/export
echo 213 > /sys/class/gpio/export
echo 214 > /sys/class/gpio/export
echo low > /sys/class/gpio/gpio214/direction
echo high > /sys/class/gpio/gpio204/direction
echo high > /sys/class/gpio/gpio205/direction
echo in > /sys/class/gpio/gpio14/direction
echo in > /sys/class/gpio/gpio165/direction
echo low > /sys/class/gpio/gpio236/direction
echo low > /sys/class/gpio/gpio237/direction
echo in > /sys/class/gpio/gpio212/direction
echo in > /sys/class/gpio/gpio213/direction
echo mode1 > /sys/kernel/debug/gpio_debug/gpio28/current_pinmux
echo mode1 > /sys/kernel/debug/gpio_debug/gpio27/current_pinmux
echo high > /sys/class/gpio/gpio214/direction

You should be able to use IO18 and IO19 for I2C communication.

 Intel® Edison Kit for Arduino*
February 2015 Hardware Guide
Document Number: 331191-007 29

Shield pin configuration

11.7 Configure IO10 through IO13 for SPI connectivity
To configure IO10 through IO13 for SPI connectivity, do the following:

 Refer to Table 2 for the GPIO numbers. According to Table 2, the GPIO numbers for IO10 through IO13 are 1.
111, 115, 114, and 109, respectively.

 According to Table 4, GPIO 263 must be set to 1 to select GPIO/SPI, GPIO 240 must be set to 1 to select 2.
SPI, and GPIO 111 pin-mux must be set to ‘mode1’ to select SPI for IO10.

 According to Table 4, GPIO 262 must be set to 1 to select GPIO/SPI, GPIO 241 must be set to 1 to select 3.
SPI, and GPIO 115 pin-mux must be set to ‘mode1’ to select SPI for IO11.

 According to Table 4, GPIO 242 must be set to 1 to select SPI, and GPIO 114 pin-mux must be set to 4.
‘mode1’ to select SPI for IO12.

 According to Table 4, GPIO 243 must be set to 1 to select SPI, and GPIO 109 pin-mux must be set to 5.
‘mode1’ to select SPI for IO13.

 According to Table 7, GPIO 258 must be set to 1 to enable the output direction for IO10, GPIO 259 must 6.
be set to 1 to enable the output direction for IO11, GPIO 260 must be set to 0 to disable the output
direction for IO12, and GPIO 261 must be set to 1 to enable the output direction for IO13.

 According to Table 7, GPIOs 226 through 229 must be set as high-impedance inputs to disable the pullup 7.
resistors for IO10 through IO13.

 According to Table 6, the TRI_STATE_ALL signal is controlled by GPIO 214. 8.

 After you have gathered all of this information, enter the following commands in Linux: 9.

echo 111 > /sys/class/gpio/export
echo 115 > /sys/class/gpio/export
echo 114 > /sys/class/gpio/export
echo 109 > /sys/class/gpio/export
echo 263 > /sys/class/gpio/export
echo 240 > /sys/class/gpio/export
echo 262 > /sys/class/gpio/export
echo 241 > /sys/class/gpio/export
echo 242 > /sys/class/gpio/export
echo 243 > /sys/class/gpio/export
echo 258 > /sys/class/gpio/export
echo 259 > /sys/class/gpio/export
echo 260 > /sys/class/gpio/export
echo 261 > /sys/class/gpio/export
echo 226 > /sys/class/gpio/export
echo 227 > /sys/class/gpio/export
echo 228 > /sys/class/gpio/export
echo 229 > /sys/class/gpio/export
echo 214 > /sys/class/gpio/export
echo low > /sys/class/gpio/gpio214/direction
echo high > /sys/class/gpio/gpio263/direction
echo high > /sys/class/gpio/gpio240/direction
echo high > /sys/class/gpio/gpio262/direction
echo high > /sys/class/gpio/gpio241/direction
echo high > /sys/class/gpio/gpio242/direction
echo high > /sys/class/gpio/gpio243/direction
echo high > /sys/class/gpio/gpio258/direction
echo high > /sys/class/gpio/gpio259/direction
echo low > /sys/class/gpio/gpio260/direction
echo high > /sys/class/gpio/gpio261/direction
echo in > /sys/class/gpio/gpio226/direction
echo in > /sys/class/gpio/gpio227/direction

Intel® Edison Kit for Arduino*
Hardware Guide February 2015
30 Document Number: 331191-007

Shield pin configuration

echo in > /sys/class/gpio/gpio228/direction
echo in > /sys/class/gpio/gpio229/direction
echo mode1 > /sys/kernel/debug/gpio_debug/gpio111/current_pinmux
echo mode1 > /sys/kernel/debug/gpio_debug/gpio115/current_pinmux
echo mode1 > /sys/kernel/debug/gpio_debug/gpio114/current_pinmux
echo mode1 > /sys/kernel/debug/gpio_debug/gpio109/current_pinmux
echo high > /sys/class/gpio/gpio214/direction

You should be able to use IO10 through IO13 for SPI connectivity.

 §

 Intel® Edison Kit for Arduino*
February 2015 Hardware Guide
Document Number: 331191-007 31

	1 Introduction
	1.1 Software requirements
	1.2 Terminology
	1.3 References

	2 Product Overview
	2.1 Shield pin GPIO mapping
	2.2 Pin function multiplexing control (summary)
	2.3 Pin function multiplexing control (detailed)
	2.4 GPIO interrupt support
	2.5 Miscellaneous GPIOs
	2.6 Pin direction and pullup control

	3 High-Level Functional Description
	3.1 Intel® Edison kit for Arduino* header signal list
	3.2 Intel® Edison kit for Arduino* PWM swizzler
	3.3 Intel® Edison kit for Arduino* analog inputs
	3.4 Intel® Edison kit for Arduino* signal pullup resistors
	3.5 Intel® Edison kit for Arduino* USB interface
	3.6 Intel® Edison kit for Arduino* power supply
	3.7 Intel® Edison kit for Arduino* expansion mechanicals

	4 Powering the Intel® Edison kit for Arduino*
	4.1 Boot voltage selection – DCIN signal

	5 Batteries
	6 Layout
	6.1 Antenna keepout
	6.2 Layout SD card, I2S, SPI, I2C
	6.3 LEDs

	7 Handling
	8 Debug UART and Low-Power Sleep Mode
	9 Buttons
	9.1 FWR_RCVR and RCVR_MODE

	10 Digikey sources
	11 Shield pin configuration
	11.1 Configure IO5 as a GPIO input, with pullup resistor disabled
	11.2 Configure IO11 as a GPIO input, with pullup resistor disabled
	11.3 Configure IO7 as a GPIO input, with pullup resistor enabled
	11.4 Configure IO6 as a PWM output
	11.5 Configure IO14 as an ADC input
	11.6 Configure IO18/IO19 for I2C connectivity
	11.7 Configure IO10 through IO13 for SPI connectivity

