Edison Overview

Information Contained in this Presentation is Subject to Change without Notice
The Intel® Edison development platform is designed to lower the barriers to entry for a range of Inventors, Entrepreneurs and consumer product designers to rapidly prototype and produce IoT and wearable computing products.
The Intel® Edison Offering

Hardware
- Edison Module + Derivatives
- Expansion Boards

Software
- Yocto + Various Runtimes, IDE & Developer Tools

Cloud
- Developer cloud solution and partner-based solutions for scale

Support
- Managed on-line community, trouble ticketing, drawings, schematics, datasheets, code libraries, webinars, etc.

Ecosystem
- ISVs, Incubators, Crowd Source funders & SIs

- Maker
- Pro-Maker & Entrepreneur
- Consumer IoT
- Light Ind. IoT

No extended temp or life

Cloud
Developer cloud solution and partner-based solutions for scale
Retail Configurations*

<table>
<thead>
<tr>
<th>Maker</th>
<th>Pro-Maker & Entrepreneur</th>
<th>Consumer IoT</th>
<th>Light Ind. IoT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$85 RCP</td>
<td>$60 RCP</td>
<td>$50 RCP</td>
<td>No extended temp or life</td>
</tr>
</tbody>
</table>

*The Recommended Channel Prices stated here are suggested prices only. Distributors are not obligated to charge these prices. Each Distributor is entitled to determine independently the prices at which products may be sold to its customers.
Intel® Edison
Compute Module
What will you make?
Intel® Edison Mechanical Layout

- Processor and DDR POP Memory
- PMIC
- eMMC 4Gbyte
- 70 PIN I/O Connector
- WiFi/BT 4.0 module
- Embedded 2.4/5 GHz Antenna
- Antenna COAX
- USB ULPI Transceiver

Top Side

Bottom Side

Dimensions:
- Width: 25mm
- Height: 35.5mm
Physical

<table>
<thead>
<tr>
<th>Property</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form Factor</td>
<td>Board with 70-pin connector</td>
</tr>
<tr>
<td>Dimensions</td>
<td>35.5 x 25.0 x 3.9 mm max</td>
</tr>
<tr>
<td>C/M/F</td>
<td>Blue PCB with Shields / No enclosure</td>
</tr>
<tr>
<td>Connector</td>
<td>Hirose DF40 Series (1.5mm, 2.0mm, or 3.0mm stack height)</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0 – 40 degC</td>
</tr>
</tbody>
</table>

External Interfaces

Total of 40 GPIOs which can be configured as:

- **SD Card**: 1 Interface
- **UART**: 2 Controllers (1 full flow control, 1 RX/TX)
- **I2C**: 2 Controllers
- **SPI**: 1 Controller with 2 chip selects
- **I2S**: 1 Controller
- **GPIO**: Additional 12 (with 4 capable of PWM)
- **USB 2.0**: 1 OTG Controller
- **Clock Output**: 32 KHz, 19.2 MHz

Power

- **Input**: 3.3V – 4.5V
- **Output**: 100mA @3.3V and 100mA @ 1.8V
- **Standby (No radios)**: 13mW
- **Standby (BT 4.0)**: 21.5mW (BTLE in Q4’14)
- **Standby (WiFi)**: 35 mW

Firmware + Software

- **CPU OS**: Yocto Linux® v1.6
- **Development Environments**:
 - Arduino® IDE
 - Eclipse supporting: C, C++, & Python
 - Intel XDK supporting: Node.JS & HTML5
- **MCU OS**: RTOS
- **Development Environments**:
 - MCU SDK and IDE

Major Edison Components

- **SoC**: 22-nm Intel® SoC that includes a dual-core, dual-threaded Intel® Atom™ CPU at 500Mhz and a 32-bit Intel® Quark™ microcontroller at 100 MHz
- **RAM**: 1 GB LPDDR3 POP memory (2 channel 32bits @ 800MT/sec)
- **Flash Storage**: 4 GB eMMC (v4.51 spec)
- **WiFi**: Broadcom® 43340 802.11 a/b/g/n; Dual-band (2.4 and 5 GHz) On board antenna or external antenna SKU configurations
- **Bluetooth**: BT 4.0

Major Edison Features

- **CPU**: 22-nm Intel® SoC that includes a dual-core, dual-threaded Intel® Atom™ CPU at 500Mhz and a 32-bit Intel® Quark™ microcontroller at 100 MHz
- **RAM**: 1 GB LPDDR3 POP memory (2 channel 32bits @ 800MT/sec)
- **Flash Storage**: 4 GB eMMC (v4.51 spec)
- **WiFi**: Broadcom® 43340 802.11 a/b/g/n; Dual-band (2.4 and 5 GHz) On board antenna or external antenna SKU configurations
- **Bluetooth**: BT 4.0

Major Edison Components

- **SoC**: 22-nm Intel® SoC that includes a dual-core, dual-threaded Intel® Atom™ CPU at 500Mhz and a 32-bit Intel® Quark™ microcontroller at 100 MHz
- **RAM**: 1 GB LPDDR3 POP memory (2 channel 32bits @ 800MT/sec)
- **Flash Storage**: 4 GB eMMC (v4.51 spec)
- **WiFi**: Broadcom® 43340 802.11 a/b/g/n; Dual-band (2.4 and 5 GHz) On board antenna or external antenna SKU configurations
- **Bluetooth**: BT 4.0
Intel® Edison
Expansion Boards
Intel® Edison Family: *Supporting the long tail via Expansion Boards*

Intel Expansion Boards

Partner Expansion Boards

Built to Order Expansion Boards
Intel® Edison Board for Arduino*

Market position: Similar to Arduino Yun (Arduino Sketch, Linux, WiFi & BT)

Board I/O: Compatible with Arduino Uno (except only 4 PWM instead of 6 PWM)

- 20 digital input/output pins including 4 pins as PWM outputs
- 6 analog inputs
- 1 UART (RX/TX)
- 1 I2C
- 1 ICSP 6-pin header (SPI)
- Micro USB device connector OR (via mechanical switch) dedicated standard size USB host Type-A connector
- Micro USB device (connected to UART)
- SD Card connector
- DC power jack (7V – 15V DC input)
Intel® Edison Breakout Board

Market position: The Edison Breakout board is for non-Arduino users. This breakout board has a minimalistic set of features and is slightly larger than the Edison module.

Board I/O:
- Exposes native 1.8V I/O of the Edison module
- .1” grid I/O array of through-hole solder points
- USB OTG with USB Micro Type-AB connector
- USB OTG power switch
- Battery Charger
- USB to device UART bridge with USB Micro Type-B connector
- DC power supply jack (7V – 15V DC input)
Intel® Edison
Software
Edison Developer Options

Cloud
- Arduino* IDE
 - Win */ Mac*
- Arduino* Sketch
 - C++
- Arduino* Libraries

IDE
- Intel XDK
 - Win*/ Mac*/ Linux*
- Javascript (Node JS)

Programming Language
- C/ C++/Python

Tools/ Libraries
- Intel XDK
- ISS
- Wyliodrin*
- MCU SDK

OS / Boot Image
- Yocto Linux* 1.6
- RTOS

RTOS

* Windows is a registered trademark of Microsoft Corporation in the United States and other countries. Other names and brands may be claimed by the property of others by all third party name and the notation.
Edison Release 1 Software Stack

Tools / Support Software
- Native SDK
- Flash Tools
- Debug
- GDB
- Yocto Build System

Edison Cloud
- Cloud Services Portal
 - Device Registration
 - User Profile

Middleware
- Messaging
- D2D / D2C Connectivity
- mDNS
- MQTT
- 0MQ
- IO LibC
- Connman

Arduino (Hosted Software)
- Arduino IDE
- Core Libraries
- Download Client
- Cross-Compilers

Poky-Linux v3.10 Platform BSP
- Tangier Support in Kernel
- USB Gadget
- USB Storage
- SD Master
- USB OTG
- Supplicant
- Wi-Fi STA
- BlueZ
- BT + LE
- GPIO
- I2C Master
- PWM
- SPI Master
- UART
- RTC
- Thermal
- Watchdog

OS Loader
- U-boot

Firmware
- IFWI
- Wi-Fi
- BT

Trusted Boot
- Trusted Boot ROM

Software License Types
- GPL License
- MIT License
- PaaS
- Branded or Licensed Binary
- On Die Silicon based ROM
Intel® Edison R1 Software Support

Firmware
- Intel IFWI (Integrated FirmWare Image) in binary

OS Loader
- U-Boot version (2nd stage bootloader in source)

Kernel/BSP
- Yocto Linux 1.6
- Linux kernel v3.10.17

Tools
- Native SDK
 - Standard compiler support (GCC 4.8.2), GLIB 2.38.2
 - Standard debugger support GDB 7.6.2
- Custom Tools: Flash tools (DFU-Util ; XFSTK for stitching & flashing)

Additional Developer Tools & Environments
- Arduino IDE for Mac, Windows and Linux OS
 - Cross compilers for each of the host
 - Core Arduino Libraries
- Node.js (Supported by Intel® XDK)
- Python (This package is part of BSP)

WLAN/BT Connectivity (BCM43340)
- Firmware in Binary: WiFi STA and BT+LE
- Drivers in source: BRCM kernel drivers, WiFi Supplicant and BlueZ

Middleware
- Connectivity framework for simplified D2D and D2C
 - Networking, Messaging, privacy/security

Cloud
- Web Portal, Identity Management, User Profile
- Device Registration; Device Data Upload/Visualization
<table>
<thead>
<tr>
<th>Firmware</th>
<th>WLAN/BT Connectivity (BCM43340)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel IFWI (Integrated FirmWare Image) in binary</td>
<td>Firmware in Binary: WiFi STA and BT+LE</td>
</tr>
<tr>
<td>OS Loader</td>
<td>Drivers in source: BRCM kernel drivers, WiFi Supplicant and BlueZ</td>
</tr>
<tr>
<td>U-Boot version (2nd stage bootloader in source)</td>
<td></td>
</tr>
<tr>
<td>Kernel/BSP</td>
<td>Middleware</td>
</tr>
<tr>
<td>Yocto Linux 1.6</td>
<td>Connectivity framework for simplified D2D and D2C</td>
</tr>
<tr>
<td>Linux kernel v3.10.17</td>
<td>- Networking, Messaging, privacy/security</td>
</tr>
<tr>
<td>Tools</td>
<td>Connectivity Framework Enhancements</td>
</tr>
<tr>
<td>Native SDK</td>
<td>- Bluetooth Support</td>
</tr>
<tr>
<td>- Standard compiler support (GCC 4.8.2), GLIB 2.38.2</td>
<td>Expanded I/O Library Support</td>
</tr>
<tr>
<td>- Standard debugger support GDB 7.6.2</td>
<td>- JavaScript & Python Bindings, Additional Sensors</td>
</tr>
<tr>
<td>Custom Tools: Flash tools (DFU-Util ; XFSTK for stitching & flashing)</td>
<td>Cloud</td>
</tr>
<tr>
<td>Additional Developer Tools & Environments</td>
<td>Web Portal, Identity Management, User Profile</td>
</tr>
<tr>
<td>Arduino IDE for Mac, Windows and Linux OS</td>
<td>Device Registration; Device Data Upload/Visualization</td>
</tr>
<tr>
<td>- Cross compilers for each of the host</td>
<td>Portal Enhancements & Back-end Integration</td>
</tr>
<tr>
<td>- Core Arduino Libraries</td>
<td>RESTful Device Data Access</td>
</tr>
<tr>
<td>Node.js (Supported by Intel® XDK)</td>
<td>Device Messaging & Notification with Third-Party Service Integration</td>
</tr>
<tr>
<td>Python (This package is part of BSP)</td>
<td>OTA Software Installation & Update</td>
</tr>
<tr>
<td>Release 2 Deltas from Release 1 in blue</td>
<td>Logging Features</td>
</tr>
<tr>
<td></td>
<td>Hosted IDE for Cloud-based Services</td>
</tr>
<tr>
<td></td>
<td>Online Forums</td>
</tr>
</tbody>
</table>
Intel® IoT Analytics Platform

- Provides seamless Device to Device and Device to Cloud communication
- Ability to run rules on your data stream that trigger alerts based on advanced analytics
- Foundational tools for collecting, storing, and processing data in the cloud
- Free for limited and non-commercial use
Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. THE INFORMATION PROVIDED IS SUBJECT TO CHANGE WITHOUT NOTICE. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel, Quark, Look Inside and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by Intel is under license.

Other names and brands may be claimed as the property of others.
Copyright ©2014 Intel Corporation.
Risk Factors

The above statements and any others in this document that refer to plans and expectations for the second quarter, the year and the future are forward-looking statements that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,” “intends,” “plans,” “believes,” “seeks,” “estimates,” “may,” “will,” “should” and their variations identify forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements. Many factors could affect Intel’s actual results, and variances from Intel’s current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be important factors that could cause actual results to differ materially from the company’s expectations. Demand for Intel's products is highly variable and, in recent years, Intel has experienced declining orders in the traditional PC market segment. Demand could be different from Intel's expectations due to factors including changes in business and economic conditions; consumer confidence or income levels; customer acceptance of Intel’s and competitors’ products; competitive and pricing pressures, including actions taken by competitors; supply constraints and other disruptions affecting customers; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Intel operates in highly competitive industries and its operations have high costs that are either fixed or difficult to reduce in the short term. Intel's gross margin percentage could vary significantly from expectations based on capacity utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; changes in revenue levels; segment product mix; the timing and execution of the manufacturing ramp and associated costs; excess or obsolete inventory; changes in unit costs; defects or disruptions in the supply of materials or resources; and product manufacturing quality/yields. Variations in gross margin may also be caused by the timing of Intel product introductions and related expenses, including marketing expenses, and Intel's ability to respond quickly to technological developments and to introduce new products or incorporate new features into existing products, which may result in restructuring and asset impairment charges. Intel's results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Intel's results could be affected by the timing of closing of acquisitions, divestitures and other significant transactions. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust, disclosure and other issues, such as the litigation and regulatory matters described in Intel's SEC filings. An unfavorable ruling could include monetary damages or an injunction prohibiting Intel from manufacturing or selling one or more products, precluding particular business practices, impacting Intel’s ability to design its products, or requiring other remedies such as compulsory licensing of intellectual property. A detailed discussion of these and other factors that could affect Intel's results is included in Intel’s SEC filings, including the company's most recent reports on Form 10-Q, Form 10-K and earnings release.

Rev. 4/15/14