“Single-chip Cloud Computer”
An experimental many-core processor from Intel Labs

Justin Rattner
Chief Technology Officer
Intel Corporation
Evolving User Experiences

Single-Core Era
- Textual
- Multi-purpose
- Productive

Multi-Core Era
- Visual
- Mobile
- Entertaining

Many-Core Era
- Immersive
- Social
- Perceptive
Performance Scaling Challenges

Energy Efficiency
Design Complexity
Programming Strategy
Emerging Applications
Cloud Computing Today

Cloud datacenters:
- 1000s of networked computers
- Millions of threads & petabytes of data

Opportunity:
- Lower power, higher density via integration
- Greater efficiency and better programmability

Example: Intel's Open Cirrus testbed
Intel Labs Pittsburgh

Future: Many-core Processor?
Single-chip Cloud Computer (SCC)

- Experimental many-core CPU on 45 nm Hi-K metal-gate silicon
- 48 IA-compatible cores – the most ever built on a single chip
- Network of 2-core nodes mimics cloud computing at chip level
- Fine-grained power management scales from 25-125W
- Supports proven, highly parallel “scale-out” programming models
Inside the SCC

- 2D mesh network with 256 GB/s bisection bandwidth
- 4 Integrated DDR3 memory controllers (64GB addressable)
New Data-Sharing Options

The SCC eliminates significant complexity & power by removing hardware cache coherency.

Enables exploration of more scalable alternatives:
- Ultra-low latency HW-accelerated message passing
- Software-managed, page-level memory coherency
Improving Energy Efficiency

Fine-grain, software-controlled power management

8 voltage and 28 frequency islands

- Each tile can run at a different frequency
- 6 banks of four tiles can run at different voltages
- Also independent V&F control for I/O network & MCs
A Platform for SW Innovation

• Planning underway to share the SCC platform
• Dozens of partners within 6 months, more over time
• Already working with several partners:
 - Microsoft, ETH Zurich, UC Berkeley and University of Illinois

“We’re very excited about Intel’s SCC. In the Barreliash project we are designing OS architectures for future multi-core and many-core systems. The chip’s memory system and message passing support are a great fit for us, and it’s an ideal vehicle for us to test and validate our ideas.”
- Prof. Timothy Roscoe, ETH Zurich

“The upcoming Single-chip Cloud Computer is of great interest to application developers and tools researchers. The availability of the hardware will greatly accelerate our development of applications and tools for massively parallel computing platforms.”
- Prof. Wen-Mei Hwu, University of Illinois, UPCRC@Illinois co-director

Learn more at www.intel.com/go/terascale
SCC Summary: Meeting the Scalability Challenges

Energy Efficiency
- Dynamic voltage/frequency scaling
- 1/3 power reduction for core-core I/O

Design Complexity
- Array of small IA-based tiles could lead to more agile, flexible designs

Programming Models
- Message-passing, shared virtual memory, map-reduce, and actors

Application Development
- Working with Microsoft & others for academic, industry innovation
Extending Tera-scale Research

2006 Many-core Prototype
“Teraflops Research Processor”
- Many simple FP cores
- Validated tiled-design concept
- Tested HW limits of a mesh network
- Sleep capabilities at core and circuit level
- Lightweight message passing
- Limited programmability for basic benchmarks
- Primarily a circuit experiment

2009 Many-core Prototype
“Single-chip Cloud Computer”
- Many **fully-functional** IA cores
- Prototypes a tiled-design microprocessor
- Improved mesh with 3x performance/watt
- Dynamic voltage & frequency scaling
- Message passing & controlled memory sharing
- Full programmability for application research
- Circuit & software research vehicle
Meeting Performance Demands

- Entertainment, Learning
- Financial Analytics
- Personal Media Creation and Management
- Health and Medicine

INTEL TERA-SCALE RESEARCH

Performance

- TIPS
- GIPS
- MIPS
- KIPS

Dataset Size

- Kilobytes
- Megabytes
- Gigabytes
- Terabytes

- Model-Based Apps
- 3D and Video
- Multimedia
- Text

- Multi-Core
- Many-core
- Single-Core
ISSCC Abstract

“A 48-Core IA-32 Message Passing Processor with DVFS in 45nm CMOS”

Abstract:

A 567mm² processor in 45nm CMOS integrates 48 IA-32 cores and 4 DDR3 channels in a 6×4 2D-mesh network. Cores communicate through message passing using 384KB of on-die shared memory. Fine grain power management takes advantage of 8 voltage and 28 frequency islands to allow independent DVFS of cores and mesh. As performance scales, the processor dissipates between 25W and 125W.
• Design:
 - IA core and the Message Passing solution
 - Memory Controllers

• Validation:
 - Logic validation of the complete chip
 - FPGA Emulation for pre-silicon SW prototyping

• Platform:
 - Test bed system validation and bring up platform

• Software:
 - A Linux OS
 - Platform firmware, operational SW & drivers
- Circuit and physical design of the 45nm iA core using synthesis and custom designs
- Design and implementation of the on-die 2-D mesh network and the digital logic of the DDR3-Memory Controller
- Logic and performance verification of the prototype processor