Tunnel Creek: Intel’s First Generation Intel® Atom™ Processor-based System-on-Chip for Embedded

Matthew Adiletta, Intel Fellow & Director
Pranav Mehta, Senior Principal Engineer & CTO, ECG

Technology Insight SPCS002
Agenda

• Tunnel Creek Architecture Overview
 – Platform Partitioning Flexibility
 – Platform BOM Reduction
 – Performance Density

• Tunnel Creek Application Case Studies
 – Industrial Automation
 – IP Media Phone
 – Electronic Cash Register
 – In-Vehicle Infotainment

• Summary
The Embedded Internet by 2015

Internet 7 X 24
Every Modality of Life

15B Devices

Ubiquitous

Invisible

Many

Researchers

Mainframes

Servers, PC’s

Cell Phones

Embedded
Intel® ATOM™ Processor: FUELING THE BUILD OUT

Digital Blackjack Table
Pachinko Machine
Vending Machine
Carwash Kiosk
Subway Ticket Station
Biometrics Finger Print Reader
Point of Sale
Digital Weight Scale
ATM
Hotel Concierge System
Handheld Barcode Reader
Handheld Wireless Spectrum Tester
Handheld Ultrasound
Hospital Bedside Terminal
Voting Machine
Lottery Machine
Network Security Appliance
VoIP PBX
Test and Measurement Appliance
Education Terminal
Communications Gateway
Programmable Logic Controller
Computer Numeric Controllers
Industrial HMI Panel
Industrial PC
Avionics System
Wearable PC
Connected Soldier Device
Military Soldier Training Device

>2,900 Design Engagements
Enabling the Next 1,000 Embedded Customers

• Customers Need:
 – Reduced Cost on Bill of Materials
 – Increased Control of System Source code
 – Reduced Vendor Complexity
 – Reduced Boot Times
 – Reduced Foot Print
 – >Perf/Watt/Inch
3 Cornerstones of Innovation for Tunnel Creek

Platform Flexibility

Reduced Bill of Materials

Performance Density

Tunnel Creek: Intel® Atom™ Processor-based System-on-Chip for Embedded
3 Cornerstones of Innovation for Tunnel Creek

- Platform Flexibility
- Reduced Bill of Materials
- Performance Density
Re-Partitioning for Flexibility

2008 Menlow Platform

Intel® "CPU"
Processor Core
FSB
SCH
Display Controller
Graphics & Video
Memory Controller
USB
Audio
SDIO
PATA
PCIe*

2010 Queens Bay Platform

Processor Core
PCIE
IOH
SDIO
SATA
PCIe
USB
GbE

Tunnel Creek: Intel® Atom™ Processor-based System-on-Chip for Embedded
Queens Bay Platform = The software, OS, boards & chipset that work with Tunnel Creek
PCIe = PCI Express* Technology
Menlow = platform with Intel® Atom™ processor Z510/530
Launching in Q4, 2010
Queens Bay Platform
Unleashing Innovation for Optimization

Tunnel Creek
Processor Core
Display Controller
Audio
SPI/LPC
Graphics & Video
Memory Controller
PCI Express* 4 x1

Target Segment
- Segment requiring standard, minimal I/O’s e.g. IP Camera
- Customer with existing proprietary ASICs e.g. Print Imaging, PLC
- Segments with diverse I/O requirements e.g. Industrial Automation
- High volume segments with uniform I/O e.g. IVI, Media Phone, Premise Service Gateway

Proprietary ASIC
FPGA
I/O Hub (IOH)

Flexibility -> Scalable and Optimized Solutions

PCIe = PCI Express* Technology
Tunnel Creek: Intel® Atom™ Processor-based System-on-Chip for Embedded
Queens Bay Platform = The software, OS, boards & chipset that work with Tunnel Creek
Queens Bay Platform Choice of IOH

Tunnel Creek: Intel® Atom™ Processor-based System-on-Chip for Embedded
Queens Bay Platform = The software, OS, boards & chipset that work with Tunnel Creek
3 Cornerstones of Innovation for Tunnel Creek

Platform Flexibility

Reduced Bill of Materials

Performance Density
Hardware BOM Benefits of Flexibility

- Intel® Atom™ Processor-based System-on-Chip for Embedded
 - Tunnel Creek: Intel® Atom™ Processor-based System-on-Chip for Embedded
 - e.g., 2008 IVI platform
 - e.g. 2010 IVI platform
Software BOM: A Spectrum of Options

<table>
<thead>
<tr>
<th>Solution</th>
<th>Custom BIOS</th>
<th>Standard BIOS</th>
<th>Boot Loader Development Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Name</td>
<td>-</td>
<td>-</td>
<td>Trinity Lake</td>
</tr>
<tr>
<td>Rating</td>
<td>Best</td>
<td>Better</td>
<td>Good</td>
</tr>
<tr>
<td>Features</td>
<td>Advanced Features</td>
<td>All PC features</td>
<td>CPU, Memory, Basic I/O initialization</td>
</tr>
<tr>
<td>OS</td>
<td>Off the Shelf OS, Windows * OS, RTOS, Custom OS</td>
<td>Off the Shelf OS, Windows OS</td>
<td>RTOS, Custom OS and Embedded OS</td>
</tr>
<tr>
<td>Availability</td>
<td>Ready for Silicon Launch</td>
<td>Ready for Silicon Launch</td>
<td>Likely after Silicon Launch</td>
</tr>
<tr>
<td>Completeness</td>
<td>Fine tuning, unique features & boot times</td>
<td>Turnkey Solutions, Reliable schedules</td>
<td>Some Assembly Required</td>
</tr>
<tr>
<td>Cost</td>
<td>Highest</td>
<td>Middle</td>
<td>Lowest</td>
</tr>
</tbody>
</table>

Trinity Lake: Boot Loader Development Kit for Intel® Atom™ Processor based platforms in Embedded
Software BOM: A Spectrum of Options

Intel is actively enabling the Embedded Eco-System
3 Cornerstones of Innovation for Tunnel Creek

- Platform Flexibility
- Reduced Bill of Materials
- Performance Density
Tunnel Creek
Improved Graphics Performance

3D Mark'06 relative score

- Intel® Atom™ Processor Z5xx
- Tunnel Creek

Menlow-XL package size (CPU: 22x22 + SCH: 37.5x37.5) = 1890mm²
Tunnel Creek+Topcliff package size (CPU: 22x22 + IOH: 23x23) = 1013mm²
46% smaller but 50% better graphics performance
Or 2.7x performance density improvement

Tunnel Creek: Intel® Atom™ Processor-based System-on-Chip for Embedded
Menlow = platform with Intel® Atom™ processor Z510/530
Tunnel Creek
Improved Performance Density
Boot Performance with Splash

• Video BIOS normally scans for panel timings and device priority

• Intel® Embedded Graphics Driver v10.2 supplies Embedded Pre-OS Graphics (EPOG) Driver

• Optimized Pre-OS driver for LVDS splash screen support

• Performance*
 – RESET# to Display < 500 mS

• Available on Intel® Atom™ processors Z5xx series

*Time estimated from CPU RESET vector, beginning of system firmware execution on a customer reference board based on the Intel® Atom™ processor Z5xx series and the Intel® System Controller Hub-based platform.
Tunnel Creek Application Examples
Programmable Logic Controllers
1. Historically hardware centric (ASIC+MCU)
2. Shifting to software centric design on IA
3. Enables software scalability across PLCs
4. Delivers Faster Time to Market
5. Increased performance headroom
The IA Continuum of Computing
For Industrial Automation

One Software Code Base

Intel® Architecture
Tunnel Creek for IP Media Phones

News
Weather
Stock
Music
Photos
Video
Directory
+
IP Multimedia communication
Tunnel Creek for IP Media Phone
Lower Cost, Increased Capabilities

Menlow Today

- Scalable Solution
- Low Power
- Dual Independent Video Streams
- HW Accelerated De-Code
- Intel® Hyper-Threading Technology and HW virtualization (Intel® VT-x)
- Security Integrated in HW
- Intel® HD Audio 7 Channel, HW AEC

Queens Bay Adds

- HW Accelerated Encode
- 50% Boost in Graphics Performance
- Reduced BOM
- 45% Reduction in form factor*
- Integration of Acoustic Echo, Line Echo and Noise Cancellation

* Compared to Menlow XL
Tunnel Creek Opportunity for Smart Electronic Cash Registers (ECR)

- $1500: Smart & Adaptable ECR
- $1000: ECR
- $500: ECR

Closed | Architecture Flexibility | Open
Tunnel Creek for Smart Adaptable ECRs

Platform Flexibility:
- Business specific
- Modular apps
- Multi-lingual capability or Localization

Reduced Bill of Materials:
- Integrated Peripherals
- MeeGo* & Trinity Lake Support

Performance Density:
- Internet capable
- Human-Machine Interface
- One-touch Interface

Tunnel Creek: Intel® Atom™ Processor-based System-on-Chip for Embedded
Trinity Lake: Boot Loader Development Kit for Intel® Atom™ Processor based platforms in Embedded
“Today we're thinking and behaving like a consumer-electronics company,”

Derrick Kuzak, Ford Motor Company
VP of Global Product Development

January 2010
Tunnel Creek for IVI

Performance:
- Advanced Usage Models
- Multimodal HMI
- ECU Consolidation
- Energy Efficient CPU
- Rich Internet Experience

Automotive Capable:
- Extended Temp (-40C - +85C)
- Embedded Lifetime (~7 - 10 yrs)
- Auto Spec
 (Grade 3-AEC-Q100 Rev F)
- Auto OS Support
 (Microsoft, QNX, MeeGo*)
- Lower DPM

Rich Ecosystem:
- Hardware and Software
- Compatibility and Re-use
- PC and Consumer
- Electronics Ecosystem

Tunnel Creek: Intel® Atom™ Processor-based System-on-Chip for Embedded
Tunnel Creek for IVI
In-Vehicle Infotainment Compute Module (ICM)

• 230 Pin MXM2 connector

• Defined Pin functions for 230 Pin
 – Includes numerous common automotive functions in addition to common CE functions

• 106mm x 85mm, and 85mm x 85mm versions

• Edge connector tested at Automotive conditions

• Easy migration to next generation
 – Pin functions service both Tunnel Creek + IOH & Next Gen Atom + IOH design migration without carrier board change

<table>
<thead>
<tr>
<th>Item</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Presentation/technical overview</td>
<td>NOW</td>
</tr>
<tr>
<td>Detailed Specifications/Q&R material</td>
<td>March</td>
</tr>
<tr>
<td>Millville Development Systems</td>
<td>May</td>
</tr>
<tr>
<td>Sample ICMs</td>
<td>May</td>
</tr>
<tr>
<td>ODM sample ICMs</td>
<td>September</td>
</tr>
<tr>
<td>ICM development Kits (Crossville)</td>
<td>Q4 ‘10</td>
</tr>
<tr>
<td>ODM Production</td>
<td>Q4 ‘10 onward</td>
</tr>
</tbody>
</table>
Tunnel Creek based ICM Block Diagram

230 pin Finger Edge
ICM scales top to bottom and for multiple generations

Gen 1
Menlow Based ICM

- High End
 3D Navigation
 Multi-display Entertainment

- Mid-range
 Navigation
 Optional Single Display Entertainment

- Entry
 Media Connectivity

Gen 2
Tunnel Creek Based ICM

- High End
 3D Navigation
 Multi-display Entertainment

- Mid-range
 Navigation
 Optional Single Display Entertainment

- Entry
 Media Connectivity

ICM will have different CPU speed, memory and other population/depopulation options
ICM230
Go To Market Options

ODM Enabling
Design, Development, tooling, processes to produce ICM for Tier1 Customers

- An ODM fully enabled, and ready to Bid volume automotive business with Tier1’s

ICM Licensing
Intel licensing of design, gerbers to enable Tier1’s to choose their manufacturing channel

- Allows Tier 1 to choose and enable their own ODM or manufacturer and/or take advantage of automotive techniques

ICM Specification
Pin-out, connector, form factor etc.

- Allows room for Tier1 to choose exact cost points while maintaining pin out compatibility or carrier board interoperability
Summary

Tunnel Creek delivers
1st Generation Intel® Atom™ processor Based SoC for Embedded

Tunnel Creek unlocks a new generation of innovation for Intel Atom processor in Embedded through:

- I/O Flexibility
- Bill of Materials Reduction
- Performance Density

Tunnel Creek SoC architecture poised to enable next 1,000 designs on IA
For Additional Information on Intel in Embedded Computing

Intel Embedded Design Center
http://edc.intel.com
Intel Embedded at IDF 2010:
http://edc.intel.com/Events/IDF2010/

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Session ID</th>
<th>Session Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/14</td>
<td>13:00</td>
<td>308</td>
<td>EMBS001</td>
<td>Embedded Modular Design Architecture</td>
</tr>
<tr>
<td>4/14</td>
<td>14:00</td>
<td>308</td>
<td>EMBS002</td>
<td>Embedded Software Development and System Debugging Tools for Intel® Atom™ Processor</td>
</tr>
<tr>
<td>4/14</td>
<td>15:00</td>
<td>308</td>
<td>EMBS003</td>
<td>Open Infotainment Platform for Next Generation In-Vehicle Infotainment (IVI) System</td>
</tr>
<tr>
<td>4/14</td>
<td>16:00</td>
<td>308</td>
<td>EMBS004</td>
<td>Architecting Communications Infrastructure and Networking Equipment on Intel® Architecture</td>
</tr>
<tr>
<td>4/14</td>
<td>17:00</td>
<td>308</td>
<td>EMBQ001</td>
<td>Hot Topic Q&A - Embedded Solutions</td>
</tr>
</tbody>
</table>
Please Fill out the Session Evaluation Form

Give the completed form to the room monitors as you exit!

Thank You for your input, we use it to improve future Intel Developer Forum events
IDF 2010
英特尔信息技术峰会
Legal Disclaimer

- INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

- Intel may make changes to specifications and product descriptions at any time, without notice.

- All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

- Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

- Tunnel Creek, Menlow, Queens Bay, Trinity Lake and other code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user.

- Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

- Intel, Atom, Xeon, Core and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

- *Other names and brands may be claimed as the property of others.

- Copyright © 2010 Intel Corporation.
Risk Factors

The above statements and any others in this document that refer to plans and expectations for the first quarter, the year and the future are forward-looking statements that involve a number of risks and uncertainties. Many factors could affect Intel’s actual results, and variances from Intel’s current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important factors that could cause actual results to differ materially from the corporation’s expectations. Demand could be different from Intel’s expectations due to factors including changes in business and economic conditions; customer acceptance of Intel’s and competitors’ products; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Additionally, Intel is in the process of transitioning to its next generation of products on 32nm process technology, and there could be execution issues associated with these changes, including product defects and errata along with lower than anticipated manufacturing yields. Revenue and the gross margin percentage are affected by the timing of new Intel product introductions and the demand for and market acceptance of Intel’s products; actions taken by Intel’s competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel’s response to such actions; defects or disruptions in the supply of materials or resources; and Intel’s ability to respond quickly to technological developments and to incorporate new features into its products. The gross margin percentage could vary significantly from expectations based on changes in revenue levels; product mix and pricing; start-up costs, including costs associated with the new 32nm process technology; variations in inventory valuation, including variations related to the timing of qualifying products for sale; excess or obsolete inventory; manufacturing yields; changes in unit costs; impairments of long-lived assets, including manufacturing, assembly/test and intangible assets; the timing and execution of the manufacturing ramp and associated costs; and capacity utilization; Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment charges, vary depending on the level of demand for Intel’s products and the level of revenue and profits. The majority of our non-marketable equity investment portfolio balance is concentrated in companies in the flash memory market segment, and declines in this market segment or changes in management’s plans with respect to our investments in this market segment could result in significant impairment charges, impacting restructuring charges as well as gains/losses on equity investments and interest and other. Intel’s results could be impacted by adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Intel’s results could be affected by the timing of closing of acquisitions and divestitures. Intel’s results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust and other issues, such as the litigation and regulatory matters described in Intel’s SEC reports. An unfavorable ruling could include monetary damages or an injunction prohibiting us from manufacturing or selling one or more products, precluding particular business practices, impacting our ability to design our products, or requiring other remedies such as compulsory licensing of intellectual property. A detailed discussion of these and other risk factors that could affect Intel’s results is included in Intel’s SEC filings, including the report on Form 10-Q.