Enabling New Ultra Portable Form Factors through Multi-Radio Integration

Krishnamurthy Soumyanath
Intel Fellow
Director Communications Technology Lab
Intel Corporation
April 1, 2008
Agenda

CSLL Vision

Carry Small Device Implications

Multi-radio Integration Needs

Digital CMOS Transceiver Innovations
Carry Small
A Vision of tomorrow’s mobile device:

- Carry only Essential Computational Resources
- Platform-wide Power Efficiency
- Anytime, Anywhere Collaboration with the Internet
- Sensor-based to understand the world around you
Carry Small:
Make Mobile Devices More Mobile!

More Performance
Increased Battery Life
More Connectivity Options
Better Graphics
Better Web Page Compatibility
Carry Small: More Form Factor Friendly

- Smaller Silicon Footprint
- Less Power Consumption
- Lower Cost
- Fewer Connectors
- Less Complexity

Today

Future

Required to deliver the Carry Small Vision
Live Large: Better Experience
That knows No Bounds...
• Delivers amplified, more robust mobile experience
 • Seamless access to new Devices, Networks and Services
 • Understands & Anticipates what you want to do
Carry Small: More Form Factor Friendly!

• Increasing Mobility needs
• Decreasing Form Factor Size

Need Technology Breakthroughs in:
• Architecture
• CMOS Process
• Radio Design

Big Opportunity with Serious Challenges

32 nm and Beyond!
Multi-radio Research Domain

- Tunable Front End Modules / Antenna
- Digitally Enhanced Radio RFIC
- Scalable Communication Core - PHY/MAC
- Radio Platform SoC RFI Mitigation
- Energy Efficient Communications
- Seamless connectivity
- Standards 802.11r, 802.11v, 802.16m, IETF
Integrate Multi-radio CMOS Transceiver with flexible baseband processor & multi-MAC

Requires technology breakthroughs in radio design
Digitally Enhanced Radio (DER) Architecture

Digitally Enhanced Radio

- Simplified analog receiver
- Sigma delta ADC
- Digital synthesizer
- Digital transmitter, Switching PA

Increased digital content → Cost reduction + Better platform integration
Motivation for High Performance ADC

- Scaled CMOS
- Lower Supply
- Simplify Analog Baseband
- Digital Programmability
- Multi-standard Receiver

Low Noise, High Linearity ΔΣ ADC Required!
Motivation for High Performance ADC

- Low resolution FLASH ADC for spectrum sensing
- Simple Spectrum Analyzer for spectrum estimation and ADC mode selection
Spectrum Sensing Wi-Fi/WiMAX ADC
Power Efficient 802.11n Operation

12 bit ADC allows Analog to be replaced by Digital circuits

Senses interference from other radios in the same band. Adjusts for optimal Power & Performance

Optimal channel selection maximizes real-life throughput

Supports Wi-Fi/WiMAX bandwidths in a power efficient manner

Lowest power 802.11n ADC - First reconfigurable ADC for 802.11n and multi-radio applications
Motivation for Reconfigurable ADC
Digitally Enhanced Radio Robustness

Adjacent Channels

Channel n

Channel n+1

Receiver Linearity Impacts performance
Digitally Enhanced Receiver Coexistence

Digital CMOS Receiver

- Mismatch Tuning
- Calibration Algorithm
- Baseband Processing

Differential LNA

Differential Amplifier

Goal: Digital calibration method to suppress interference due to 2nd order non-linearity
Digitally Enhanced Receiver Coexistence on IP2

China Beijing Lab’s Research improves Rx noise suppression at reduced calibration cost
Power amplifier is used to communicate from user device to base station
First power amplifier in 65nm CMOS (28.6dBm power output)

Power amplifier innovation:
- Delivers close to 1 Watt power for wide coverage
- Uses novel technique to introduce complex modulation required for high data rates
- Implemented in digital 65nm CMOS process for easy integration with digital processor (low cost)

<table>
<thead>
<tr>
<th></th>
<th>Range & Output Power</th>
<th>Data Rate & Modulation Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular</td>
<td>HIGH</td>
<td>Small</td>
</tr>
<tr>
<td>Wi-Fi</td>
<td>Small</td>
<td>HIGH</td>
</tr>
<tr>
<td>WiMAX</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
</tbody>
</table>
60GHz presents opportunity for high throughput WPAN standard
First ever mm-wave CMOS synthesizer with <3kHz frequency resolution
Millimeter-wave CMOS Technology for Multi-Gb/s Wireless Communication

- Several GHz bandwidth available around 60GHz
- > 2GHz channel \rightarrow > 5Gb/s data-rate
 - Download a full-HD movie in < 1 minute (compared to 1.5 hours for legacy WLAN)
- Frequency synthesizer is used for channel selection
- Fundamental building block required in CMOS for integrated mm wave radios
- Reduces size and improves yield with built in calibration
- Multi-Gb/s data-rate for (WPAN, wireless-HD etc)
Intel CMOS Xcvr Prototype
Multi-Band CMOS Transceiver with Integrated FE
90nm 802.11agn WLAN 1x2 MIMO

Power efficient dual band TX with full power on chip class AB PAs + Digital Pre-distortion
Advanced Digital-Pre-Distortion Calibration for excellent performance and system stability
Dual band (2.4G and 5 ÷ 6G) LNA integration
Full dual band FE integration enables low cost and high performance, enabling small form factor.

Excellent performance with on-chip PAs and advanced pre-distortion calibration.

Multi-Band CMOS Transceiver with Integrated FE
90nm 802.11agn WLAN 1x2 MIMO
Future Research Directions

Integrate Flexible Baseband processor & digital CMOS transceiver

Integrate remaining platform components for integrated multi-radio SoC solution
Summary

Intel is enabling ultra portable devices with new capabilities supporting new usage models.

Aggressive multi-radio integration with platform components necessary.

Technology breakthrough in multi-standard CMOS transceiver architecture is key step in multi-radio platform integration.
Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice. All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

Intel, Intel Inside, and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2008 Intel Corporation.
Risk Factors

This presentation contains forward-looking statements that involve a number of risks and uncertainties. These statements do not reflect the potential impact of any mergers, acquisitions, divestitures, investments or other similar transactions that may be completed in the future. The information presented is accurate only as of today’s date and will not be updated. In addition to any factors discussed in the presentation, the important factors that could cause actual results to differ materially include the following:

Factors that could cause demand to be different from Intel’s expectations include changes in business and economic conditions, including conditions in the credit market that could affect consumer confidence; customer acceptance of Intel’s and competitors’ products; changes in customer order patterns, including order cancellations; and changes in the level of inventory at customers. Intel’s results could be affected by the timing of closing of acquisitions and divestitures. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Additionally, Intel is in the process of transitioning to its next generation of products on 45 nm process technology, and there could be execution issues associated with these changes, including product defects and errata along with lower than anticipated manufacturing yields. Revenue and the gross margin percentage are affected by the timing of new Intel product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel’s response to such actions; Intel’s ability to respond quickly to technological developments and to incorporate new features into its products; and the availability of sufficient components from suppliers to meet demand. The gross margin percentage could vary significantly from expectations based on changes in revenue levels; product mix and pricing; capacity utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; excess or obsolete inventory; manufacturing yields; changes in unit costs; impairments of long-lived assets, including manufacturing, assembly/test and intangible assets; and the timing and execution of the manufacturing ramp and associated costs, including start-up costs. Expenses, particularly certain marketing and compensation expenses, vary depending on the level of demand for Intel's products, the level of revenue and profits, and impairments of long-lived assets. Intel is in the midst of a structure and efficiency program that is resulting in several actions that could have an impact on expected expense levels and gross margin. Intel is also in the midst of forming Numonyx, a private, independent semiconductor company, together with STMicroelectronics N.V. and Francisco Partners L.P. A change in the financial performance of the contributed businesses could have a negative impact on our financial statements. Intel’s equity proportion of the new company’s results will be reflected on its financial statements below operating income and with a one quarter lag. The results could have a negative impact on Intel’s overall financial results. Intel’s results could be affected by the amount, type, and valuation of share-based awards granted as well as the amount of awards cancelled due to employee turnover and the timing of award exercises by employees. Intel’s results could be impacted by adverse economic, social, political and physical/infrastructure conditions in the countries in which Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Intel’s results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust and other issues, such as the litigation and regulatory matters described in Intel’s SEC reports. A detailed discussion of these and other factors that could affect Intel’s results is included in Intel’s SEC filings, including the report on Form 10-Q for the quarter ended Sept. 29, 2007.