Tera-scale software research:
Programming 10s-100s of cores

Jerry Bautista, PhD
Co-director, Tera-scale Computing Research
Intel Corporation
What is Tera-scale?

Teraflops of performance operating on Terabytes of data

Emerging Apps

3D & Video

Multimedia

Multi-core

Text

Single-core

Kilobytes

Megabytes

Gigabytes

Terabytes

Performance

Dataset Size

Intel Developer FORUM
Example emerging Application

Many emerging apps are parallel and “model-based”
Ex: Modeled body, modeled motion, modeled lighting

See Justin’s keynote on “Virtual World” Thursday
Tera-scale Computing: A New Drive for Parallel Programming

Growing need for new parallel programming tools and capabilities
Joint Hardware & Software R&D

New Application Ideas → Prototype Threaded Application → Prototype Multi-core Architecture → New Architecture Ideas

Prototype Threaded Application

New Application Ideas

Refine Software Designs

Examples: Media search, Physical Modeling

Examples: Cache hierarchy, Task scheduling

Cycle-accurate Simulators
kHz speeds
~hours to modify

FPGA Emulators
MHz speeds
Days to modify

Silicon Prototypes
GHz speeds
Months to modify

ReSEARCH TOOLS

See Emulator demo in tech showcase
See 80-core demo in tech showcase
The Tera-scale Computing Vision

Parallel Programming Tools & Techniques

Virtual Environments
Educational Simulation
Financial Modeling
Media Search & Manipulation
Web Mining Bots*

Model-Based Applications

Thread-Savvy Execution Environment

Stacked, Shared Memory

Scalable Multi-core Architectures

High Bandwidth I/O & Communications
Taking Parallel Programming Mainstream

Used for decades in HPC, parallel programming requires
- Special expertise, not easily automated
- Requires parallel languages/language extensions
- Must co-exist with legacy code

Parallel languages or parallel language extensions need to:
- **Extract** parallelism hiding within applications
- **Express** parallelism via programming constructs
- **Exploit** parallelism on multi-core platforms
Types of Parallelism

- **Task**: multiple independent activities, which may or may not share data

- **Data**: one or few tasks operating on a large amount of data
 - Will review Ct later in presentation
 - Subject of demo and class (TCRS0003)
Common Parallel Programming Models

<table>
<thead>
<tr>
<th>Programming model</th>
<th>Example Application Today</th>
<th>Example Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message Passing</td>
<td>HPC type apps on a cluster</td>
<td>MPI</td>
</tr>
<tr>
<td>Shared-memory or Thread</td>
<td>General Par Tasks, Database</td>
<td>OpenMP</td>
</tr>
<tr>
<td>Data Parallel</td>
<td>Mathematical simulations</td>
<td>MatLab</td>
</tr>
<tr>
<td>Streaming</td>
<td>Graphics shaders</td>
<td>C_G</td>
</tr>
</tbody>
</table>
Diverse Programming Environment

Historically, new languages often emerge and compete. Adoption can be slow and success hard to predict.

Lesson: No one language will be a silver bullet that solves the parallel programming challenges
Research to Help Enable Parallelism

• **STM (Software Transactional Memory)**
 - Shared memory model is dominant but problematic due to synchronization of locks in highly parallel environments

• **Ct (C for throughput computing)**
 - Relieves need to worry about threads in data parallel execution models providing parallel extensions to C and C++

• **Exo (Accelerator Exoskeleton)**
 - Bringing IA “look and feel “ of common development environments to parallel, *heterogeneous* environments.
Unlocking Parallelism in a Shared Memory Environment

Must carefully control how multiple threads access shared memory

Today we “lock” memory for one thread at a time.

- Other threads must wait, reducing multi-core benefit
- Locking code scales poorly, must re-do for more threads
- Can cause critical software deadlocks and errors
- We need to fix this...

Account locked during access

A $50
B $200
C $200

2003 Northeast blackout

Mars rover problem

Presented by Justin Rattner at IDF Day0, Spring 2006
STM: From Research to Reality

Ensures correct parallel memory access without locks

- Greater performance
- Easier to program
- Scales with hardware

Programmers can try it!

AVAILABLE STARTING TODAY
Whatif.intel.com
Intel® C++ STM Compiler Prototype Edition
Ct: Nested Data Parallel Programming

Ct adds *new parallel* data structures & operators to C/C++; But uses *existing & unmodified* C/C++ compilers

C/C++ Compiler

Ct-based Parallel Data Types

Scalable, Adaptive Performance

Tera-scale
Ct Motivation and Vision

- Make parallel programming easier now:
 - Extend *deterministic* parallel programming models
 - I.e. Data races not possible
 - Express complex behaviors through simple operators
 - Present a simple and predictable performance model

- Provide a forward-scaling programming model that maximizes ISV ROI for new code creation
 - “Future-proof” apps from increasing core count and inevitable ISA evolution

See today’s post by Anwar Ghuloum at blogs.intel.com/research for more info
Programming for Heterogeneous Cores

- Multi-core brings the opportunity to integrate fixed function accelerators with IA cores
- Implementation difficult and very HW specific

Accelerators today rely on custom drivers bound tightly to the OS.

The software layers between the app accelerator cause performance-limiting overhead
Programming Accelerators Today

SW DEVELOPMENT

1. Obtain custom kits from hw vendor
2. Learn accelerator tools, language
3. Compile accelerator program
4. Accelerate!
5. Compile host IA program
6. Host!

SW EXECUTION

1. MAIN MEMORY
 - Host loads accelerator program
 - Accelerate!

2. HOST
 - Abstraction Layer
 - OS
 - Driver
 - Send commands via driver interface
 - Accelerate!

3. DEVICE MEMORY
 - Abstraction Layer
 - OS
 - Driver
 - Results transferred from device memory
 - Accelerate!

4. RESULTS!

5. Intel Developer FORUM
Exo - Accelerator Exoskeleton Model

The exoskeleton makes accelerators appear like a part of the processor

SW DEVELOPMENT

- Use standard tools to design code
- Program accelerator(s) like IA extensions
- Compile single program

SW EXECUTION

- Application
- Operating System
- Multi-threading Runtime Library
- ISA with Accelerator Exoskeleton Extensions

Program

Intel Developer FORUM

18
Demonstrations

1. Video enhancement application (de-interlacing)

- Code for graphics in standard IDE
- Use Intel compiler to build a single "exe"
- Exoskeleton environment divides the work

2. Similar demo with a financial analytics application
Convergence of Many Parallel Apps

RMS Taxonomy
- Recognition
- Mining
- Synthesis

MODEL-BASED Computing

Security Biometrics
Cancer Detection
Media Indexing
Web search

Body Tracking
Interactive Virtual Worlds
Financial Predictions
Data Warehousing

Facial Animation
Ray Tracing

MATHEMATICAL MODELS & METHODS
- Vector Training
- Optimization Methods
- Monte Carlo
- Geometric Structures
- Classifiers
- Collision Detection

COMMON NUMERICAL METHODS & DATA STRUCTURES

Key architectural enhancements based on application and user needs

Intel Developer FORUM
Independent IDC Market Analysis

• Spending on computing continues to grow

• New usage models are emerging

• IDC working with Intel and others to understand this space
 - "IDC believes that new use cases for computing are emerging which will drive significant growth...Our research has shown that highly parallel applications and multi-core processors are key drivers enabling this emerging trend."
 - Matt Eastwood, Group Vice President, IDC Enterprise Platform Research

Full report to be published in October
Summary

• The key challenges to parallel programming
 - Programmability and scalability
 - Interoperability and integration of heterogeneous execution blocks

• Parallel programming is the key to unlocking the full potential of the Tera-scale platforms
 - Mainstream programmers enabled through broad set of development and optimization tools.
 - Technologies developed to extend well-known programming environments (Ct, Exo and STM)
 - Tools and technologies are already being deployed now:
 ▪ TBB – threadingbuildingblocks.org
 ▪ STM on Whatif.intel.com

• Model-based computing applications are compelling with market projections supporting potential for broad adoption
More information on Tera-scale...

Tera-scale Computing Research Chalk Talk

Chair: Jerry Bautista, Co-Director, Tera-scale Computing Research

TCRC001: Wed, Sept. 19, 4:40 - 5:30, Chalk Talk Room

Other Tera-scale Sessions (see IDF guide for full info)

- TCRS001 Energy Management Innovations for Future Multi-Core Processors
- TCRS002 Intelligent On-chip Interconnects: The 80-core Prototype and Beyond
- TCRS003 Data Parallel Programming for Tera-scale with Ct
- TCRS004 Modeling Reality: Ray Traced Graphics and other Apps of the Future
- TCRS005 Silicon Photonics: Enabling Terabit Data Pipes
- QATS003 Accelerator Exoskeleton: IA Look-n-Feel for Heterogeneous Cores

Tech & Research Pavilion Demos:

80-core Processor, Multi-core emulator, Ct, Log-based Architectures, Ray Tracing

Learn more at www.intel.com/go/terascale and blogs.intel.com/research