Moorestown Platform: Based on Lincroft SoC Designed for Next Generation Smartphones

HOT CHIPS 2009
August 24 2009

Rajesh Patel
Lead Architect, Lincroft SoC
Intel Corporation
Legal Disclaimer

- INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life-saving, life-sustaining, critical control or safety systems, or in nuclear facility applications.

- Intel may make changes to dates, specifications, product descriptions, and plans referenced in this document at any time, without notice.

- This document may contain information on products in the design phase of development. The information here is subject to change without notice.

- Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

- Intel, the Intel logo, Centrino, Centrino logo, Core Inside, Intel386, Intel486, Intel Core, Intel Inside, Intel Inside logo, Intel SpeedStep, Itanium, MMX, Pentium, and Pentium Inside, are trademarks of Intel Corporation in the U.S. and other countries.

- *Other names and brands may be claimed as the property of others.

- Copyright © 2009 Intel Corporation. All rights reserved.
Agenda

• Moorestown Platform Overview
• Moorestown Platform Re-Partitioning
• Lincroft SoC: Designed for
 • High Performance
 • Low Power
• Summary
Major Reductions in Power and Form Factor

- **2008**
 - **Menlow**
 - Board Size: 8,500 sq mm
 - Standby Power: 1.6W

- **2009/2010**
 - **Mooresetown**
 - Board Size: Reduced 2x
 - Standby Power: Up to 50x*

- **2011**
 - **Medfield**
 - Board Size: Reduced
 - Standby Power: Lower

*Forecast

*Power and Form Factor Reductions On Track
Mooresetown Idle Is Similar To Phone Level Power

• Mooresetown Platform Idle power reduction (based on current platform features) compared to Menlow Platform
• Drawings are not to scale
Moorestown Platform Overview

LINCROFT (45nm)

- 2D / 3D Graphics
- ATOM uLP CPU core
- Hardware Video Acceleration
- Display Controller
- Memory Controller

LANGWELL (65nm)

- SDIO Ports
- MIPI CSI Interface
- NAND Controller
- Audio Codec
- USB Controller

EVANS PEAK

- WiFi a/b/g/n
- WiMAX
- BT
- GPS

Today’s Focus
Moorestown Platform Re-Partitioning

ATOM uLP CPU Core
- 45 nm HighK SoC Process
- Intel Hyper Threading support

Internal Graphics
- OpenGL ES2.0
- OpenVG 1.0

Memory Support
- LPDDR1 & DDR2
- Single Channel
- x32 bit interface

Internal Display
- LVDS
- MIPI-DSI

Video Decode and Encode

ATOM CPU 45nm

Bus Interface and Coherency engine

Display

Memory Controller

Video Decode

Lincroft

South Bridge IOs

IOH in n-x process

Menlow (CPU+IOH)

Re-Partitioning using 45nm SoC process → Higher Performance and Ultra Low Power
Lincroft Innovation Vectors

High Performance
for amazing Internet Experience

Dramatically Lower Power
Upto 50x platform idle power*

Small Size
For Smartphone Form Factor

Significant Advancement on all Key Vectors

* Moorestown Platform Idle power reduction (based on current platform features) compared to Menlow Platform
Lincroft High Performance Innovation

- Wide range of scalable frequencies for multimedia blocks
- Intel Hyper threading technology
- Bus Turbo Technology
- Burst Mode technology
Large Range of Scalable Frequencies for Multimedia Engines

Scalability enables Lincroft SoC into wide spectrum of FFs
Intel Hyper-threading Technology

Hyper-threading Performance Increase in an In-order Machine

Hyper-threading technology provides excellent Performance/Power efficiency

Source*: Intel Testing. Specint2k and EEMBC run in Single Threaded / Hyper Threaded Mode on Linux. For Performance the score for each binary is calculated based on the runtimes; For Power, the effective capacitance or C-dyn is measured per binary on each of the benchmark while running in ST and HT modes. The difference in C-dyn and thus total power difference is calculated for ST and HT modes. Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark Limitations.
“Bus Turbo Mode” -- Further Performance Boost

Motivation
- To reduce memory latency and increase bus BW when CPU bursting at higher frequencies

Implementation
- HW dynamically increases BUS frequency at pre-set CPU frequency
- No need to re-lock PLL that provides clock to bus
 - Uses clock divider

“Bus Turbo Mode” substantially reduces memory latency and provides higher bus BW
Burst Mode -- Addl Performance Headroom

- Taking advantage of Thermal headroom on Tj and Tskin by increasing CPU frequency for short duration

- When Tj and Tskin limits are violated, System throttles to Recovery points

- Optimizes consumed energy
 - Energy(WHr)=Power x time
 - Race to idle
 - Saves energy if \(\frac{t2}{t1} < \frac{p1}{p2} \)

Burst mode provides on-demand performance without impacting thermal design
Lincroft Low Power Innovations

- Low power architecture features
 - MIPI-DSI
 - LP-DDR1
 - HW accelerators for Video Decode/Encode
- Enhanced Geyserville to support ULFM
- Lincroft CPU Power C-states
- Lincroft Distributed Power Gating
Enhanced Geyserville (eGVL)

- **Motivation**
 - To provide lowest possible CPU frequency
 - To enable “As many P-states as possible” below LFM at Vmin
 - Linear savings of average power when CPU is not doing anything useful while in C0 state (cV²F)

- **Implementation**
 - Added P-states below LFM at Vmin
 - OS can now request CPU to transition to these new P-states

eGVL mode provides additional range of low power operating point
Lincroft CPU Power C-states

<table>
<thead>
<tr>
<th></th>
<th>C0 HFM</th>
<th>C0 LFM</th>
<th>C0 ULFM</th>
<th>C1/C2</th>
<th>C4</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core voltage</td>
<td>active</td>
<td>active</td>
<td>active</td>
<td>active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core clock</td>
<td>active</td>
<td>active</td>
<td>active</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>PLL</td>
<td>active</td>
<td>active</td>
<td>active</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>L1 caches</td>
<td>active</td>
<td>active</td>
<td>active</td>
<td>flushed</td>
<td>flushed</td>
<td>off</td>
</tr>
<tr>
<td>L2 caches</td>
<td>active</td>
<td>active</td>
<td>active</td>
<td>Partial flush</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>Wakeup time</td>
<td>active</td>
<td>active</td>
<td>active</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lincroft SoC: IREM image of Full ON vs. Power Gated

Aggressive Distributed Power Gating enables up-to 50x reduction in idle power*

- Multiple Physical power Islands
- Distributed power gating to enable fine grain power management
- SW interface for Active Island power management
- HW managed sequencing of power ON and OFF

* Moorestown Platform Idle power reduction (based on current platform features) compared to Menlow Platform
Summary

- **Moorestown: Based on Lincroft SoC, Designed for**
 - High Performance for amazing Internet Experience
 - Dramatically Lower Power – Upto 50x lower idle power
 - Small Size for Next Generation Smartphones

- **Lincroft High Performance Innovation**
 - Wide range of scalable frequencies for multimedia blocks
 - Intel Hyper threading technology
 - Bus Turbo Technology
 - Burst Mode technology
 - Intel 45nm SoC High-K process technology

- **Lincroft Low Power Innovation**
 - Low power architecture features
 - Enhanced Geyserville to support ULFM
 - CPU C-states
 - Lincroft Distributed Power Gating
Thank you
Lincroft SoC, Langwell and Moorestown platform team