The Intel Science and Technology Center for Embedded Computing

Investing in New Levels of Academic Collaboration

Jeff Parkhurst, Program Director ISTC-EC
Mei Chen, Intel Principal Investigator
Professor Priya Narasimhan, CMU Academic Principal Investigator
The Intel Science and Technology (ISTC) Program

- ISTCs funded for 3+2 years and span multiple institutions
- Encourage collaboration among the best researchers in the field
- Four Intel funded researchers per center work on-campus
- Encourage collaboration between Intel and academia
- Public domain IP and open source software increase impact
Introducing...
The Intel Science and Technology Center for
Embedded Computing

Mei Chen
Intel Co-Principal Investigator
Research: Computer vision
At Intel since 2006
Carnegie Mellon alumnus
Previously at *HP Labs* and *Sarnoff Corporation*
Tech transfer to 5 HP products

Priya Narasimhan
Carnegie Mellon Co-Principal Investigator
Research: Embedded systems
At CMU since 2001
Intel Labs Pittsburgh director, 2010
Founder and CEO, *YinzCam*
Previously Founder and CTO of *Eternal Systems*
The Intel Science and Technology Center for Embedded Computing (ISTC-EC)

- ISTC-EC Brings together thought leaders to drive research and transform experiences in the Retail, Automotive and Home of the future.

- Popularity of real-time intelligent and personalized technology is growing providing a corresponding rise in demand for specialized embedded computing systems to support a broad range of new applications — many yet to be envisioned.

- Three unique features designed to increase the probability of successful collaboration
 - Open collaborative research model
 - Multidisciplinary approach
 - “Hands-on” involvement of Intel
Distributed Collaboration Center

Faculty + Graduate students + Intel

- Carnegie Mellon is the hub of the ISTC-EC, coordinating research among:
 - Cornell
 - Georgia Tech
 - Penn State
 - University of California, Berkeley
 - University of Illinois at Urbana Champaign
 - University of Pennsylvania
Co-evolve algorithms and hardware/software architectures to deliver innovative embedded solutions, motivated by application domains

- **Algorithms**
 - Analyze heterogeneous data, at scale
 - Understand human behavior and intent
 - Understand the environment within the context of human behavior
 - Understand the interaction between human and the environment
 - Enable interpretation, decision, predict future action

- **Systems**
 - Enable algorithms in resource-constrained environments
 - Enable seamless, large-scale computation in location/platform-agnostic way
 - Enable crowd-sourced networked operation
 - Enable real-time, high-performance, robust hardware and software
 - Enable strategic interactions with cloud-computing environments
Application-Inspired Research

APPLICATION DOMAINS

Retail
Automotive
Home

RESEARCH THEMES

Collaborative Perception
Real-time Knowledge Discovery
Robotics
Embedded Systems
Over-archching goals
- Perceive accurately and react timely by synthesizing multi-modal data, leveraging learned prior, incorporating contextual information
- Attention/intent analysis, behavior understanding
- Interaction between human and environment

Some projects of interest
- Behavior and environment understanding using first-person sensing
- Third-person human understanding
- First-object dynamic scene understanding within the automotive context
- Real-time 3D reconstruction
THEME: Real-time Knowledge Discovery

- Over-arching goals
 - Extract information from data from both online and the physical world in a timely, scalable and reliable manner
 - Pattern discovery in con-current event streams
 - Anomaly mining
 - Learning from heterogeneous, high-dimensional data

- Some projects of interest
 - Never-ending web-scale massively parallel machine learning
 - Dimensionality reduction and distance metric learning to enable embedded solutions
 - Imitation learning
THEME: Robotics

- Over-arching goals
 - Support multi-sensory exploration
 - Manipulation in human environment
 - Indoor navigation, obstacle detection/avoidance, planning

- Some projects of interest
 - Manipulation of deformable objects such as clothing
 - Reinforcement/imitation learning for manipulation
 - Automated planogram robots for retail environments
 - Embedded solution for high-precision localization
Over-arching goals
- Enable perception and knowledge discovery in a timely manner
- Respect power/memory/computational constraints
- Acquire data about human and environment (location, proximity, etc.)

Some projects of interest
- Embedded-to-cloud gateways for sensor networks
- Embedded hypervisors for location-agnostic, device-independent experience
- Multi-sensor embedded platforms for automotive telematics
- SoCs and accelerators for machine learning and perception
Application Domains

RETAIL
- Transformative experience for the shopper
- Transformative experience for the in/cross-store retail operations

AUTOMOTIVE
- Transformative experience for the driver
- Transformative experience for the occupants

HOME
- Transformative experience for the residents
- Transformative experience for in/cross-home management
Retail 2020 Vision

- Transformative experience for the **shopper**
 - Locate product in real-time (in this store or other branches)
 - Store recognizes shopper’s preference and makes relevant suggestions
 - Allergies, nutrition, clothing preferences
 - Enable the shopper to experience products
 - Digital unboxing, virtual dressing-rooms
 - Socialize the shopping experience
 - Real-time sharing to get/give feedback/recommendations
- Transformative experience for **in/cross-store retail operations**
 - Real-time inventory and planogram integrity
 - Immersive and effective training for staff, reduce injuries
 - Free staff of automat-able tasks to provide more available and attentive customer service
 - Reduce misplacement and mislabeling of products
Automotive 2020 Vision

- Transformative experience for the **driver**
 - Assist under adverse conditions (rain, snow, crowds)
 - Enhance trip efficiency/productivity
 - Customized recommendations/planning/deals for retail, dining, parking
 - Real-time cost consciousness
 - Telematics to enhance fuel efficiency
 - Real-time automated consultation of other drivers’ experiences
 - Automated analysis of crowd-sourced sensory data of road and traffic
 - Portable driving experience
 - Capture preferences to “port” them to other vehicles for personalization

- Transformative experience for the **occupants**
 - Vehicle recognizes its occupants for customization
 - In vehicle entertainment
 - Routing, services (retail, dining, entertainment) recommendation
Home 2020 Vision

- Transformative experience for the **residents**
 - Recognizing the residents to personalize/customize
 - Temperature, entertainment, work mode, family mode
 - Home automation
 - Do programmed tasks well, e.g. unload dish washer, fold laundry
 - Learn and improve on skilled tasks, e.g. cooking, ironing
 - Support for preemptive maintenance
 - Detect wear and tear, preemptive scheduling of maintenance
 - Simulated home occupancy to enhance security

- Transformative experience for **in/cross-home management**
Long-Term Impact

- Advocate and foster algorithm-system co-design
 - Co-evolve
 - Co-adapt
- Transform algorithms research
 - Innovate while understanding challenges of real world scenarios
 - Optimize while negotiating resource constraints of embedded platforms
- Transform systems research
 - Innovate to influence and support algorithms of the future
 - Understand an algorithm beyond its being just a workload
- Shift cultural mind-set
 - Algorithms and systems do not function (nor are developed) in isolation
 - Success of ISTC depends on inter-disciplinary collaboration
Thank you