IT: Period of Transformation

Computer-Centric
Focused on Productivity through automation

Network-Centric
Focused on Cost Reduction through connectivity

Human-Centric
Focused on Rapid Service Delivery through cloud & devices
New Services in Action

MyMagic+
Visitor experience transformed through connected wristbands linked to analytics

Smart Traffic
Safety improved through ability to locate car in city of >10M in ~300ms

1. Source: Bocom

* Other names and brands may be claimed as the property of others.
But It’s Still Early

Big Data

6%

OFENTERPRISES
MAKINGDECISIONS
WITHBIGDATA
ANALYTICS

Cloud

9%

OFENTERPRISE
WORKLOADS
RESIDEINPUBLIC
CLOUD

HPC

12%

OFU.S.
MANUFACTURING
FIRMSUSEHPC
CLUSTERS

1: Intel enterprise customer IT spending survey Q1 2013
2: IDG Enterprise 2012 Cloud Computing key trends and future effects
DATACENTER
Demands a New Level of
SCALE
Efficient, On-demand, Resilient
Yet Today’s Infrastructure is Strained

Network
2-3 weeks to provision new services
66% CAGR in mobile data traffic

Storage
40% data growth CAGR, 90% unstructured

Server
Average utilization <50% despite virtualization
Intel’s Strategy:
RE-ARCHITECTING THE DATA CENTER
Intel’s Strength:
Transformation from Proprietary to Standards

Supercomputing Example

Top 500* (1997 - 2012)

1500X Performance
4X Power Increase
100X Reduction in cost per FLOP

Driven by Moore’s Law & Architecture Innovation

Top 500 MSS

2013 80%
1997 3%

Source: Intel Analysis / Top500
Software Defined Infrastructure

Changes the Game

Network

Storage

Server

From Static to Dynamic. From Manual to Automated.
Re-architect the Network
Software Defined Network (SDN)

- **MANUAL** → **AUTOMATED**
- **FIXED** → **FLEXIBLE**
- **HARDWARE DEFINED** → **SOFTWARE DEFINED**

Traditional Network

Idea for service

Manually configure devices

IT scopes

Set up network services

Balance user demands

Service running

Time to Provision New Service: 2-3 Weeks\(^1\)

With SDN

Idea for service

Self service configuration

Service running

Time to Provision New Service: Minutes\(^1\)

1: Source: Intel IT internal estimate
New Services at the Edge of the Network

Today’s Base Stations

- Limited programmability.
- Latency constrained.

Tomorrow’s Base Stations

- Intelligence at the edge.
- Faster, personalized services.
Re-architect Storage

Software Defined Storage

Traditional Storage

- Shared Capacity
- High performance
- High data protection

Tomorrow’s Storage

Storage as a Service

- Wide range of optimized solutions
- Application driven
- Greater efficiency

SAN

Access

- Frequent
- Infrequent

Capacity

- Hot
- Warm
- Cold

TB to ZB
Re-architect Storage
Software Defined Storage

- **Next Gen NVM**
 - Intel Atom
- **Accelerators**
 - Intel Xeon
- **Storage SoCs**
- **Storage Software**
 - Cache Acceleration Software
 - Enterprise Edition for Lustre

Intelligence for Efficiency and Resiliency

Tiered for Capacity and Availability

Other brands and names are the property of their respective owners.
The Power of Solutions: Big Data Example

Sort 1TB of Data:

>4 Hours

Sort 1TB of Data:

7 MINUTES

Intel® Xeon® E5-2690 processor
Intel® SSD 520 series
Intel® 10GbE adapters
Intel® Distribution for Apache Hadoop®

Other names and brands may be claimed as the property of others
Re-architecting the Server at the Rack Level

Today:

Applications constrained to resources “in the box”

App App App

Memory I/O Compute

Tomorrow:

Composable Resources

Pooled Compute
Pooled Memory
Pooled I/O

Application-driven allocation of resources for greater efficiency

App

App
Diversity of Datacenter Workloads

- E-Commerce
- Dedicated Hosting
- Enterprise Applications
- Graphics Rendering
- High Performance Computing
- Cloud RAN
- Content Delivery and Gaming
- Big Data
- Small Cell
- Edge Routing
- Storage De-dupe
- Low End Networking
- Cold Storage
- Low End Networking
- Cloud RAN
- Content Delivery and Gaming
- Big Data
Intel Covering the Full Solution Space

Greater Efficiency through App Optimization & Arch Consistency
Low Power Product Direction

2011
- Xeon E3 Sandy Bridge
 - 32nm
 - As low as 20W

2012
- Xeon E3 Ivy Bridge
 - 22nm
 - As low as 17W

2013
- Xeon E3 Haswell
 - 22nm
 - As low as 13W

2014+
- 14nm “Broadwell”
- 14nm “Broadwell” SoC

Centerton
- 32nm
- As low as 6W

Avoton Rangeley
- 22nm

All products, computer systems, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.
Intel’s Unmatched Assets

- Most Energy Efficient Transistors
- Architecture Consistency
- Software Compatibility
- Workload Optimized Silicon
- Technology Portfolio
- Global Ecosystem
Legal Disclaimers

All products, computer systems, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice. Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. Go to: http://www.intel.com/products/processor_number

Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM). Functionality, performance or other benefits will vary depending on hardware and software configurations. Software applications may not be compatible with all operating systems. Consult your PC manufacturer. For more information, visit http://www.intel.com/go/virtualization

No computer system can provide absolute security under all conditions. Intel® Trusted Execution Technology (Intel® TXT) requires a computer system with Intel® Virtualization Technology, an Intel TXT-enabled processor, chipset, BIOS, Authenticated Code Modules and an Intel TXT-compatible measured launched environment (MLE). Intel TXT also requires the system to contain a TPM v1.s. For more information, visit http://www.intel.com/technology/security

Intel, Intel Xeon, Intel Atom, Intel Xeon Phi, Intel Itanium, the Intel Itanium logo, the Intel Xeon Phi logo, the Intel Xeon logo and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Other names and brands may be claimed as the property of others.

Copyright © 2013, Intel Corporation. All rights reserved.