Carrier Aggregation lets wireless operators stitch together multiple radio frequency channels to more quickly gather and send more data.

LTE-ADVANCED

THE NEXT GENERATION

In the same way that more lanes on a highway enable more cars to pass through more quickly, carrier aggregation creates wireless traffic lanes for faster data speeds. Intel’s LTE-Advanced modem platform, the Intel XMM 726x, supports carrier aggregation and Category 6 speeds.

LTE-Advanced is bringing even faster speeds to improve things like 4K Ultra HD video, real-time gaming, and video conferencing. Enhanced connection management and HD voice support will also mean fewer dropped calls and better voice quality—so it’s like they’re right there with you.

LTE-Advanced helps operators use bandwidth more efficiently through a technology called Carrier Aggregation.

» Carrier Aggregation lets wireless operators stitch together multiple radio frequency channels to make up gigahertz and send more data.

» In the same way that more lanes on a highway enable more cars to pass through more quickly, carrier aggregation creates wireless traffic lanes for faster data speeds.

From streaming movies to sending high-definition videos, increased speeds in data transmission help our phones and tablets access larger amounts of information more quickly and easily than ever before.

Looking Forward

Mobile technology’s future is bright with LTE-Advanced—opening doors for us to have better mobile experiences with our smartphones, tablets, 2-in-1s, wearables and connected devices. With faster speeds and greater capacity, LTE-Advanced is helping usher in an innovative, new usage model like the Internet of Things (IoT) and is paving the way toward the next great leap in wireless innovation: 5G.

Sources: nbcnews.com | gizmag.com | support.en.proximus.be | data.worldbank.org | computerworld.com | mobiforge.com

We’ve come a long way since the first mobile phone. Released in 1984, the first mobile phone weighed a whopping 2 pounds and cost almost $4,000. Since then, the wireless communications infrastructure has enabled mobile devices to become an integral part of our lives, in both personal and business usage.

Just how did we get here and, more importantly, where are we going? What will wireless tech allow us to do in the near future?

The Evolution of Wireless Technology

HOW DID WE GET WHERE WE ARE?

1984

1G

No download capacity

100% - Kbps.

The first generation of mobile phones (lovingly referred to as “bricks”) are analog phones with minimal capabilities due to size, weight, and technology.

1991

2G

10.22-12.21 300 Kbps.

In 1988, cellular networks began to provide traditional voice calls, but were limited compared to today’s networks.

2001

3G/3G+

62 Mbps.

3G network technology brings a large boost in speed, greatly easing mobile Internet browsing and adding GPS and multimedia messaging for phones and tablets.

2009

4G/LTE

129 Mbps.

From streaming movies to sending high-definition videos, increased speeds in data transmission help our phones and tablets access larger amounts of information more quickly and easily than ever before.

2014-2015

LTE-ADVANCED

300 Mbps.

LTE-Advanced helps operators use bandwidth more efficiently through a technology called Carrier Aggregation.

» Carrier Aggregation lets wireless operators stitch together multiple radio frequency channels to make up gigahertz and send more data.

» In the same way that more lanes on a highway enable more cars to pass through more quickly, carrier aggregation creates wireless traffic lanes for faster data speeds.

Looking Forward

Mobile technology’s future is bright with LTE-Advanced—opening doors for us to have better mobile experiences with our smartphones, tablets, 2-in-1s, wearables and connected devices. With faster speeds and greater capacity, LTE-Advanced is helping usher in an innovative, new usage model like the Internet of Things (IoT) and is paving the way toward the next great leap in wireless innovation: 5G.