Risk Factors

• Today’s presentations contain forward-looking statements. All statements made that are not historical facts are subject to a number of risks and uncertainties, and actual results may differ materially. Please refer to our most recent Earnings Release and our most recent Form 10-Q or 10-K filing for more information on the risk factors that could cause actual results to differ.

• If we use any non-GAAP financial measures during the presentations, you will find on our website, intc.com, the required reconciliation to the most directly comparable GAAP financial measure.
Today’s News

The world’s first 3-D Tri-Gate transistors on a production technology

New 22nm transistors have an unprecedented combination of power savings and performance gains.

These benefits will enable new innovations across a broad range of devices from the smallest handheld devices to powerful cloud-based servers.

The transition to 3-D transistors continues the pace of technology advancement, fueling Moore’s Law for years to come.

The world’s first demonstration of a 22nm microprocessor -- code-named Ivy Bridge -- that will be the first high-volume chip to use 3-D Tri-Gate transistors.
Energy-Efficient Performance Built on Moore’s Law

- Lower Transistor Leakage
- Higher Transistor Performance (Switching Speed)

Active Power per Transistor (normalized)

- 65nm Planar
- 45nm Planar
- 32nm Planar
- 22nm Tri-Gate

22 nm Tri-Gate transistors increase the benefit from a new technology generation

Source: Intel
Transistor Innovations Enable Technology Cadence

- **2003**: Invented SiGe Strained Silicon
- **2005**: 2nd Gen. SiGe Strained Silicon
- **2007**: Invented Gate-Last High-k Metal Gate
- **2009**: 2nd Gen. Gate-Last High-k Metal Gate
- **2011**: First to Implement Tri-Gate

Strained Silicon

High k Metal gate

Tri-Gate
Transistor Innovations Enable Cost Benefits of Moore’s Law to Continue

Source: Intel
22 nm Manufacturing Fabs

22nm upgrades to be completed 2011-12
Tri-Gate Achievement Results from Long Term Commitment to Research

Internal Research

Pathfinding

Development

Manufacturing

Tri-Gate Invented

Tri-Gate Selected for 22nm node

Single-fin transistor demonstrated
Multi-fin transistor demonstrated
Tri-gate SRAM cells demonstrated
Tri-gate RMG process flow developed

Tri-gate optimized for HVM

Bringing innovative technologies to HVM is the result of a highly coordinated internal research-development-manufacturing pipeline
“For years we have seen limits to how small transistors can get,” said Gordon E. Moore. “This change in the basic structure is a truly revolutionary approach, and one that should allow Moore’s Law, and the historic pace of innovation, to continue.”
3-D Tri-Gate transistors form conducting channels on three sides of a vertical fin structure, providing “fully depleted” operation.

Transistors have now entered the third dimension!

Source: Intel
22 nm 3-D Tri-Gate Transistor

Source: Intel
32 nm Planar Transistors

22 nm Tri-Gate Transistors

Source: Intel
Substrate voltage exerts some electrical influence on the inversion layer (where source-drain current flows). The influence of substrate voltage degrades electrical sub-threshold slope (transistor turn-off characteristics). NOT fully depleted.

Source: Intel
Std vs. Fully Depleted Transistors

Partially Depleted SOI (PDSOI)

Floating body exerts some electrical influence on inversion layer, degrading sub-threshold slope

NOT fully depleted

Not used by Intel

Source: Intel
Floating body eliminated and sub-threshold slope improved
Requires expensive extremely thin SOI wafer, which adds ~10% to total process cost
Not used by Intel

Source: Intel
Std vs. Fully Depleted Transistors

Fully Depleted Tri-Gate Transistor

Gate electrode controls silicon fin from three sides providing improved sub-threshold slope.

Inversion layer area increased for higher drive current.

Process cost adder is only 2-3%.

Source: Intel
Maximize current in “on” state (for improved performance)
Minimize current in “off” state (for lower power)
Switch very quickly between the two states (for performance)

Source: Intel
The “fully depleted” characteristics of Tri-Gate transistors provide a steeper sub-threshold slope that reduces leakage current.

Source: Intel
Transistor Operation

The steeper sub-threshold slope can also be used to target a lower threshold voltage, allowing transistors to operate at lower voltage to reduce power and/or improve switching speed.
Transistor gate delay (switching speed) slows down as operating voltage is reduced.

Source: Intel
22 nm planar transistors could provide some performance improvement, but would still have poor gate delay at low voltage.
Transistor Gate Delay

22 nm 3-D Tri-Gate transistors provide improved performance at high voltage and an unprecedented performance gain at low voltage.

Source: Intel
22 nm 3-D Tri-Gate transistors can operate at lower voltage with good performance, reducing active power by >50%
3-D Tri-Gate Transistor Benefits

- Dramatic performance gain at low operating voltage, better than Bulk, PDSOI or FDSOI
 - 37% performance increase at low voltage
 - >50% power reduction at constant performance
- Improved switching characteristics (On current vs. Off current)
- Higher drive current for a given transistor footprint
- Only 2-3% cost adder (vs. ~10% for FDSOI)

3-D Tri-Gate transistors are an important innovation needed to continue Moore’s Law

Source: Intel
22nm Product Update

Dadi Perlmutter
Executive Vice President
General Manager,
Intel Architecture Group
New 22nm 3-D transistors deliver unprecedented performance improvement and power reduction for Intel’s product portfolio

- This benefits smallest handhelds to powerful cloud-based servers
- 37% performance increase at low voltage vs. 32nm planar transistors*
- Consumes only half the power at the same performance level as 2-D transistors on 32nm planar chips*

* Based on Intel Internal Data
Intel Architecture Spans The Compute Continuum

- Desktops
- Laptops
- Embedded
- Smart TVs
- Netbooks
- Tablets
- Smartphones
- Servers / Cloud
Newest Manufacturing Technology Delivers Ivy Bridge

45 nm Process Technology
- Penryn
 - Intel® Core™ Microarchitecture
 - TICK

32 nm Process Technology
- Nehalem
 - NEW Intel® Microarchitecture
 - TOCK
- Westmere
 - NEW Intel® Microarchitecture (Nehalem)
 - TICK
- Sandy Bridge
 - NEW Intel® Microarchitecture
 - TOCK

22 nm Process Technology
- Ivy Bridge
 - NEW Intel® Microarchitecture (Sandy Bridge)
 - TICK
 - Intel's First 22 nm Processor

Cadence of Innovation Delivers New Microprocessor Efficiency on the 22 nm Process
Ivy Bridge
Sandy Bridge Migrated to 22nm Process Technology

Client: Efficient performance for thin and light form factors
• Increased performance vs. today’s 2nd generation Intel® Core™ product family
• Enhanced media and graphics performance with processor graphics
• Enhanced security features

Server: Increased performance and improved efficiency
• Integrated Storage Features

Further Demonstrating Intel Product and Process Leadership
IA Platforms for Low Power Segments
Optimized Performance for Phones, Tablets, and Consumer Electronics

All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.
Legal Notices and Disclaimers

- INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

- Intel may make changes to specifications and product descriptions at any time, without notice.

- All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

- Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

- Any code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel’s internal code names is at the sole risk of the user.

- Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel representative to obtain Intel’s current plan of record product roadmaps.

- Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to

- Intel, Intel Inside, the Intel logo, Centrino, Centrino Inside, Intel Core, Intel Atom and Pentium are trademarks of Intel Corporation in the United States and other countries.

- Material in this presentation is intended as product positioning and not approved end user messaging.

- This document contains information on products in the design phase of development.

- *Other names and brands may be claimed as the property of others.

- Copyright © 2011 Intel Corporation, All Rights Reserved